A177234 a(n) = binomial(n^2, n)/(n+1).
2, 21, 364, 8855, 278256, 10737573, 491796152, 26088783435, 1573664496040, 106395830418878, 7970714909592876, 655454164338881388, 58702034425556612832, 5687847988198592380965, 592867741295430227919600
Offset: 2
Keywords
Examples
a(3) = 21 because binomial(9,3)/(3+1) = 84/4 = 21.
References
- H. Gupta and S. P. Khare, On C(k^2,k) and the product of the first k primes, Publ. Fac. Electrotechn. Belgrade, Ser. Math. Phys. 25-29 (1977) 577-598.
Links
- G. C. Greubel, Table of n, a(n) for n = 2..335
- H. Gupta and S. P. Khare, On C(k^2,k) and the product of the first k primes, Publ. Fac. Electrotechn. Belgrade, Ser. Math. Phys. 25-29 (1977) 577-598. [PDF] [From _R. J. Mathar_, May 09 2010]
Programs
-
Magma
[Binomial(n^2,n)/(n+1): n in [2..30]]; // G. C. Greubel, Apr 27 2024
-
Maple
with(numtheory):n0:=25:T:=array(1..n0-1):for n from 2 to n0 do: T[n-1]:= binomial(n*n,n)/(n+1):od:print(T):
-
Mathematica
Table[Binomial[n^2,n]/(n+1), {n,2,30}] (* G. C. Greubel, Apr 27 2024 *)
-
SageMath
[binomial(n^2,n)/(n+1) for n in range(2,31)] # G. C. Greubel, Apr 27 2024
Formula
From G. C. Greubel, Apr 27 2024: (Start)
a(n) = A014062(n)/(n+1).
a(n) = A177456(n)/(n-1).
a(n) = n*A177784(n).
a(n) = A177788(n)/n. (End)
Comments