cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177234 a(n) = binomial(n^2, n)/(n+1).

Original entry on oeis.org

2, 21, 364, 8855, 278256, 10737573, 491796152, 26088783435, 1573664496040, 106395830418878, 7970714909592876, 655454164338881388, 58702034425556612832, 5687847988198592380965, 592867741295430227919600
Offset: 2

Views

Author

Michel Lagneau, May 05 2010, May 08 2010

Keywords

Comments

Theorem: binomial(n^2, n)/(n+1) is an integer for n >= 2.
Proof 1 from William J. Keith, May 08 2010:
binomial(n^2, n) * 1/(n+1)
= (n^2)*(n^2-1)*(n^2-2)!/((n^2-n)!*n*(n-1)*(n-2)!) * 1/(n+1)
= n*(n^2-2)!/((n^2-n)!*(n-2)!) = n * binomial(n^2-2,n-2). QED
Proof 2 from Max Alekseyev, May 08 2010:
Recall that the valuation of m! w.r.t. prime p equals the sum floor(m/p^i) over i=1,2,3,...
Moreover, if m=a+b where a and b are nonnegative integers, then floor(m/p^i) - floor(a/p^i) - floor(b/p^i) >= 0.
Let n>1. To prove that binomial(n^2, n)/(n+1) is an integer, it is enough to show that its valuation w.r.t. any prime p is nonnegative.
It is clear that trouble may come only from primes dividing n+1.
Let valuation(n+1,p)=k > 0, i.e., n+1=p^k*m where prime p does not divide m.
Then n = p^k*m - 1, n^2 = p^(2k)*m^2 - 2*p^k*m + 1 and n^2 - n = p^(2k)*m^2 - 3*p^k*m + 2.
It is easy to check that floor(n^2/p^i) - floor(n/p^i) - floor((n^2-n)/p^i) = 1 for i=1,2,...,k if p>2 and for i=2,3,...,k+1 if p=2, implying that valuation(binomial(n^2, n)/(n+1),p) >= 0. QED

Examples

			a(3) = 21 because binomial(9,3)/(3+1) = 84/4 = 21.
		

References

  • H. Gupta and S. P. Khare, On C(k^2,k) and the product of the first k primes, Publ. Fac. Electrotechn. Belgrade, Ser. Math. Phys. 25-29 (1977) 577-598.

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n)/(n+1): n in [2..30]]; // G. C. Greubel, Apr 27 2024
    
  • Maple
    with(numtheory):n0:=25:T:=array(1..n0-1):for n from 2 to n0 do: T[n-1]:= binomial(n*n,n)/(n+1):od:print(T):
  • Mathematica
    Table[Binomial[n^2,n]/(n+1), {n,2,30}] (* G. C. Greubel, Apr 27 2024 *)
  • SageMath
    [binomial(n^2,n)/(n+1) for n in range(2,31)] # G. C. Greubel, Apr 27 2024

Formula

From G. C. Greubel, Apr 27 2024: (Start)
a(n) = A014062(n)/(n+1).
a(n) = A177456(n)/(n-1).
a(n) = n*A177784(n).
a(n) = A177788(n)/n. (End)