A177239 Partial sums of round(n^2/20).
0, 0, 0, 0, 1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 49, 60, 73, 87, 103, 121, 141, 163, 187, 213, 242, 273, 307, 343, 382, 424, 469, 517, 568, 622, 680, 741, 806, 874, 946, 1022, 1102, 1186, 1274, 1366, 1463, 1564, 1670, 1780, 1895, 2015, 2140
Offset: 0
Examples
a(20) = 0 + 0 + 0 + 0 + 1 + 1 + 2 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 10 + 11 + 13 + 14 + 16 + 18 + 20 = 141.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..895
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1,1,-2,0,2,-1).
Programs
-
Magma
[Floor((n+4)*(2*n^2-5*n+6)/120): n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
-
Maple
seq(round(n*(n-2)*(2*n+7)/120),n=0..50)
-
Mathematica
f[n_] := Round[n^2/20]; Accumulate@ Array[f, 51, 0] (* Robert G. Wilson v, Dec 20 2010 *)
-
SageMath
[(n+4)*(2*n^2 -5*n +6)//120 for n in range(56)] # G. C. Greubel, Apr 27 2024
Formula
a(n) = A001304(n-4).
a(n) = round((2*n+1)*(2*n^2 + 2*n - 15)/240).
a(n) = floor((n+4)*(2*n^2 - 5*n + 6)/120).
a(n) = ceiling((n-3)*(2*n^2 + 9*n + 13)120).
a(n) = round(n*(n-2)*(2*n+7)/120).
a(n) = a(n-20) + (n+1)*(n-20) + 141, n > 19.
From R. J. Mathar, Dec 12 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) + a(n-5) - 2*a(n-6) + 2*a(n-8) - a(n-9).
G.f.: x^4 / ( (1+x)*(1+x+x^2+x^3+x^4)*(1-x)^4 ). (End)
Comments