cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177257 a(n) = Sum_{j=0..n-1} (binomial(n,j) - (j+1))*A000110(j).

Original entry on oeis.org

0, 0, 0, 1, 8, 47, 258, 1426, 8154, 48715, 305012, 2001719, 13754692, 98801976, 740584196, 5782218745, 46942426080, 395607218279, 3455493024350, 31236784338746, 291836182128670, 2814329123555051, 27980637362452980
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Number of blocks not consisting of consecutive integers in all partitions of the set {1,2,...,n} (a singleton is considered a block of consecutive integers). Example: a(3)=1 because in 1-2-3, 1-23, 12-3, 13-2, and 123 only the block 13 does not consist of consecutive integers.

Crossrefs

Programs

  • Magma
    A177257:= func< n | n eq 0 select 0 else (&+[(Binomial(n,j)-(j+1))*Bell(j): j in [0..n-1]]) >;
    [A177257(n): n in [0..30]]; // G. C. Greubel, May 12 2024
    
  • Maple
    with(combinat): a:= proc(n) add((binomial(n, j)-j-1)*bell(j), j = 0 .. n-1) end proc: seq(a(n), n = 0 .. 22);
  • Mathematica
    Table[Sum[(Binomial[n,j]-j-1)BellB[j],{j,0,n-1}],{n,0,30}] (* Harvey P. Dale, Oct 15 2015 *)
  • SageMath
    def A177257(n): return sum((binomial(n,j) -(j+1))*bell_number(j) for j in range(n))
    [A177257(n) for n in range(31)] # G. C. Greubel, May 12 2024

Formula

a(n) = Sum_{j=0..n-1} (binomial(n,j) - (j+1))*Bell(j), where Bell(n) = A000110(n) are the Bell numbers.
a(n) = Sum_{k=0..floor(n/2)} k*A177256(n,k).
a(n) = A005493(n-1) - A177255(n).