A177257 a(n) = Sum_{j=0..n-1} (binomial(n,j) - (j+1))*A000110(j).
0, 0, 0, 1, 8, 47, 258, 1426, 8154, 48715, 305012, 2001719, 13754692, 98801976, 740584196, 5782218745, 46942426080, 395607218279, 3455493024350, 31236784338746, 291836182128670, 2814329123555051, 27980637362452980
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Magma
A177257:= func< n | n eq 0 select 0 else (&+[(Binomial(n,j)-(j+1))*Bell(j): j in [0..n-1]]) >; [A177257(n): n in [0..30]]; // G. C. Greubel, May 12 2024
-
Maple
with(combinat): a:= proc(n) add((binomial(n, j)-j-1)*bell(j), j = 0 .. n-1) end proc: seq(a(n), n = 0 .. 22);
-
Mathematica
Table[Sum[(Binomial[n,j]-j-1)BellB[j],{j,0,n-1}],{n,0,30}] (* Harvey P. Dale, Oct 15 2015 *)
-
SageMath
def A177257(n): return sum((binomial(n,j) -(j+1))*bell_number(j) for j in range(n)) [A177257(n) for n in range(31)] # G. C. Greubel, May 12 2024
Comments