cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A177254 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having k adjacent blocks (0 <= k <= n). An adjacent block is a block of the form (i, i+1, i+2, ...).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 1, 4, 6, 3, 1, 5, 13, 17, 12, 4, 1, 21, 51, 61, 44, 20, 5, 1, 91, 219, 255, 185, 90, 30, 6, 1, 422, 1019, 1182, 867, 440, 160, 42, 7, 1, 2103, 5108, 5964, 4430, 2322, 896, 259, 56, 8, 1, 11226, 27448, 32373, 24406, 13118, 5292, 1638, 392, 72, 9, 1
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Sum of entries in row n = A000110(n) (the Bell numbers).

Examples

			T(4,2)=6 because we have 1-234, 12-34, 123-4, 13-2-4, 14-2-3, and 1-24-3.
Triangle starts:
     1;
     0,    1;
     0,    1,    1;
     0,    2,    2,    1;
     1,    4,    6,    3,    1;
     5,   13,   17,   12,    4,   1;
    21,   51,   61,   44,   20,   5,   1;
    91,  219,  255,  185,   90,  30,   6,  1;
   422, 1019, 1182,  867,  440, 160,  42,  7,  1;
  2103, 5108, 5964, 4430, 2322, 896, 259, 56,  8,  1;
		

Crossrefs

Programs

  • Maple
    Q[0] := 1: for n to 10 do Q[n] := expand(u*subs(w = v, diff(Q[n-1], u))+u*subs(w = v, diff(Q[n-1], v))+w*(diff(Q[n-1], w))+w*subs(w = v, Q[n-1])) end do: for n from 0 to 10 do P[n] := sort(expand(subs({v = t, w = t, u = 1}, Q[n]))) end do; for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form

Formula

The row generating polynomial P[n](t) is given by P[n](t)=Q[n](1,t,t), where Q[n](u,v,w) is obtained recursively from Q[n](u,v,w) =u(dQ[n-1]/du){w=v} + u(dQ[n-1]/dv){w=v} + w(dQ[n-1]/dw) + w(Q[n-1])_{w=v}, Q[0]=1. Here Q[n](u,v,w) is the trivariate generating polynomial of the partitions of {1,2,...,n}, where u marks blocks that are not adjacent, v marks adjacent blocks not ending with n, and w marks adjacent blocks ending with n.
T(n, 0) = A168444(n).
Sum_{k=0..n} T(n, k) = A000110(n) (row sums).
Sum_{k=0..n} k*T(n, k) = A177255(n).
From G. C. Greubel, May 12 2024: (Start)
T(n, n) = 1.
T(n, n-1) = n-1, for n >= 1.
T(n, n-2) = A002378(n-2), for n >= 2.
T(n, n-3) = A162148(n-3), for n >= 3.
T(n, n-4) = A302560(n-3), for n >= 4. (End)

A177255 a(n) = Sum_{j=1..n} j*B(j-1), where B(k) = A000110(k) are the Bell numbers.

Original entry on oeis.org

0, 1, 3, 9, 29, 104, 416, 1837, 8853, 46113, 257583, 1533308, 9676148, 64452909, 451475027, 3314964857, 25442301577, 203604718076, 1695172374548, 14654631691569, 131309475792709, 1217516798735521, 11664652754184043, 115319114738472472, 1174967255260496776
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Number of adjacent blocks in all partitions of the set {1,2,...,n}. An adjacent block is a block of the form (i, i+1, i+2, ...). Example: a(3)=9 because in 1-2-3, 1-23, 12-3, 13-2, and 123 we have 3, 2, 2, 1, and 1 adjacent blocks, respectively.

Crossrefs

Partial sums of A052889.

Programs

  • Magma
    [n eq 0 select 0 else (&+[j*Bell(j-1): j in [1..n]]): n in [0..30]]; // G. C. Greubel, May 11 2024
    
  • Maple
    with(combinat): a := proc (n) options operator, arrow: sum(j*bell(j-1), j = 1 .. n) end proc; seq(a(n), n = 0 .. 23);
  • Mathematica
    With[{nn=30},Join[{0},Accumulate[BellB[Range[0,nn-1]]Range[nn]]]] (* Harvey P. Dale, Nov 10 2014 *)
  • SageMath
    [sum(j*bell_number(j-1) for j in range(1,1+n)) for n in range(31)] # G. C. Greubel, May 11 2024

Formula

a(n) = Sum_{k=0..n} k * A177254(n,k).

A177256 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having exactly k blocks that do not consist of consecutive integers (0<=k<=floor(n/2); a singleton is considered a block of consecutive integers).

Original entry on oeis.org

1, 1, 2, 0, 4, 1, 8, 6, 1, 16, 25, 11, 32, 89, 77, 5, 64, 290, 433, 90, 128, 893, 2132, 951, 36, 256, 2645, 9602, 7710, 934, 512, 7618, 40589, 53137, 13790, 329, 1024, 21489, 163739, 328119, 152600, 11599, 2048, 59665, 637587, 1872748, 1409791, 228103
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Row n contains 1+ floor(n/2) entries.
Sum of entries in row n = A000110(n) (the Bell numbers).
T(n,0) = 2^{n-1} (A000079).
Sum(k*a(n,k),k>=0) = A177257(n).

Examples

			T(4,1)=6 because we have 134-2, 124-3, 14-23, 1-24-3, 14-2-3, and 13-2-4.
Triangle starts:
1;
1;
2,0;
4,1;
8,6,1;
16,25,11;
32,89,77,5;
		

Crossrefs

Programs

  • Maple
    Q[0] := 1: for n to 12 do Q[n] := expand(u*subs(w = v, diff(Q[n-1], u))+u*subs(w = v, diff(Q[n-1], v))+w*(diff(Q[n-1], w))+w*subs(w = v, Q[n-1])) end do: for n from 0 to 12 do P[n] := sort(expand(subs({v = 1, w = 1}, Q[n]))) end do: for n from 0 to 12 do seq(coeff(P[n], u, j), j = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

The row generating polynomial P[n](u) is given by P[n](u)=Q[n](u,1,1), where Q[n](u,v,w) is obtained recursively from Q[n](u,v,w) =u(dQ[n-1]/du){w=v} + u(dQ[n-1]/dv){w=v} + w(dQ[n-1]/dw) + w(Q[n-1])_{w=v}, Q[0]=1. Here Q[n](u,v,w) is the trivariate generating polynomial of the partitions of {1,2,...,n}, where u marks blocks that do not consist of consecutive integers, v marks blocks consisting of consecutive integers and not ending with n, and w marks blocks consisting of consecutive integers and ending with n.
Showing 1-3 of 3 results.