cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A177254 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having k adjacent blocks (0 <= k <= n). An adjacent block is a block of the form (i, i+1, i+2, ...).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 1, 4, 6, 3, 1, 5, 13, 17, 12, 4, 1, 21, 51, 61, 44, 20, 5, 1, 91, 219, 255, 185, 90, 30, 6, 1, 422, 1019, 1182, 867, 440, 160, 42, 7, 1, 2103, 5108, 5964, 4430, 2322, 896, 259, 56, 8, 1, 11226, 27448, 32373, 24406, 13118, 5292, 1638, 392, 72, 9, 1
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Sum of entries in row n = A000110(n) (the Bell numbers).

Examples

			T(4,2)=6 because we have 1-234, 12-34, 123-4, 13-2-4, 14-2-3, and 1-24-3.
Triangle starts:
     1;
     0,    1;
     0,    1,    1;
     0,    2,    2,    1;
     1,    4,    6,    3,    1;
     5,   13,   17,   12,    4,   1;
    21,   51,   61,   44,   20,   5,   1;
    91,  219,  255,  185,   90,  30,   6,  1;
   422, 1019, 1182,  867,  440, 160,  42,  7,  1;
  2103, 5108, 5964, 4430, 2322, 896, 259, 56,  8,  1;
		

Crossrefs

Programs

  • Maple
    Q[0] := 1: for n to 10 do Q[n] := expand(u*subs(w = v, diff(Q[n-1], u))+u*subs(w = v, diff(Q[n-1], v))+w*(diff(Q[n-1], w))+w*subs(w = v, Q[n-1])) end do: for n from 0 to 10 do P[n] := sort(expand(subs({v = t, w = t, u = 1}, Q[n]))) end do; for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form

Formula

The row generating polynomial P[n](t) is given by P[n](t)=Q[n](1,t,t), where Q[n](u,v,w) is obtained recursively from Q[n](u,v,w) =u(dQ[n-1]/du){w=v} + u(dQ[n-1]/dv){w=v} + w(dQ[n-1]/dw) + w(Q[n-1])_{w=v}, Q[0]=1. Here Q[n](u,v,w) is the trivariate generating polynomial of the partitions of {1,2,...,n}, where u marks blocks that are not adjacent, v marks adjacent blocks not ending with n, and w marks adjacent blocks ending with n.
T(n, 0) = A168444(n).
Sum_{k=0..n} T(n, k) = A000110(n) (row sums).
Sum_{k=0..n} k*T(n, k) = A177255(n).
From G. C. Greubel, May 12 2024: (Start)
T(n, n) = 1.
T(n, n-1) = n-1, for n >= 1.
T(n, n-2) = A002378(n-2), for n >= 2.
T(n, n-3) = A162148(n-3), for n >= 3.
T(n, n-4) = A302560(n-3), for n >= 4. (End)

A177255 a(n) = Sum_{j=1..n} j*B(j-1), where B(k) = A000110(k) are the Bell numbers.

Original entry on oeis.org

0, 1, 3, 9, 29, 104, 416, 1837, 8853, 46113, 257583, 1533308, 9676148, 64452909, 451475027, 3314964857, 25442301577, 203604718076, 1695172374548, 14654631691569, 131309475792709, 1217516798735521, 11664652754184043, 115319114738472472, 1174967255260496776
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Number of adjacent blocks in all partitions of the set {1,2,...,n}. An adjacent block is a block of the form (i, i+1, i+2, ...). Example: a(3)=9 because in 1-2-3, 1-23, 12-3, 13-2, and 123 we have 3, 2, 2, 1, and 1 adjacent blocks, respectively.

Crossrefs

Partial sums of A052889.

Programs

  • Magma
    [n eq 0 select 0 else (&+[j*Bell(j-1): j in [1..n]]): n in [0..30]]; // G. C. Greubel, May 11 2024
    
  • Maple
    with(combinat): a := proc (n) options operator, arrow: sum(j*bell(j-1), j = 1 .. n) end proc; seq(a(n), n = 0 .. 23);
  • Mathematica
    With[{nn=30},Join[{0},Accumulate[BellB[Range[0,nn-1]]Range[nn]]]] (* Harvey P. Dale, Nov 10 2014 *)
  • SageMath
    [sum(j*bell_number(j-1) for j in range(1,1+n)) for n in range(31)] # G. C. Greubel, May 11 2024

Formula

a(n) = Sum_{k=0..n} k * A177254(n,k).

A177257 a(n) = Sum_{j=0..n-1} (binomial(n,j) - (j+1))*A000110(j).

Original entry on oeis.org

0, 0, 0, 1, 8, 47, 258, 1426, 8154, 48715, 305012, 2001719, 13754692, 98801976, 740584196, 5782218745, 46942426080, 395607218279, 3455493024350, 31236784338746, 291836182128670, 2814329123555051, 27980637362452980
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Number of blocks not consisting of consecutive integers in all partitions of the set {1,2,...,n} (a singleton is considered a block of consecutive integers). Example: a(3)=1 because in 1-2-3, 1-23, 12-3, 13-2, and 123 only the block 13 does not consist of consecutive integers.

Crossrefs

Programs

  • Magma
    A177257:= func< n | n eq 0 select 0 else (&+[(Binomial(n,j)-(j+1))*Bell(j): j in [0..n-1]]) >;
    [A177257(n): n in [0..30]]; // G. C. Greubel, May 12 2024
    
  • Maple
    with(combinat): a:= proc(n) add((binomial(n, j)-j-1)*bell(j), j = 0 .. n-1) end proc: seq(a(n), n = 0 .. 22);
  • Mathematica
    Table[Sum[(Binomial[n,j]-j-1)BellB[j],{j,0,n-1}],{n,0,30}] (* Harvey P. Dale, Oct 15 2015 *)
  • SageMath
    def A177257(n): return sum((binomial(n,j) -(j+1))*bell_number(j) for j in range(n))
    [A177257(n) for n in range(31)] # G. C. Greubel, May 12 2024

Formula

a(n) = Sum_{j=0..n-1} (binomial(n,j) - (j+1))*Bell(j), where Bell(n) = A000110(n) are the Bell numbers.
a(n) = Sum_{k=0..floor(n/2)} k*A177256(n,k).
a(n) = A005493(n-1) - A177255(n).
Showing 1-3 of 3 results.