cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A177255 a(n) = Sum_{j=1..n} j*B(j-1), where B(k) = A000110(k) are the Bell numbers.

Original entry on oeis.org

0, 1, 3, 9, 29, 104, 416, 1837, 8853, 46113, 257583, 1533308, 9676148, 64452909, 451475027, 3314964857, 25442301577, 203604718076, 1695172374548, 14654631691569, 131309475792709, 1217516798735521, 11664652754184043, 115319114738472472, 1174967255260496776
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Number of adjacent blocks in all partitions of the set {1,2,...,n}. An adjacent block is a block of the form (i, i+1, i+2, ...). Example: a(3)=9 because in 1-2-3, 1-23, 12-3, 13-2, and 123 we have 3, 2, 2, 1, and 1 adjacent blocks, respectively.

Crossrefs

Partial sums of A052889.

Programs

  • Magma
    [n eq 0 select 0 else (&+[j*Bell(j-1): j in [1..n]]): n in [0..30]]; // G. C. Greubel, May 11 2024
    
  • Maple
    with(combinat): a := proc (n) options operator, arrow: sum(j*bell(j-1), j = 1 .. n) end proc; seq(a(n), n = 0 .. 23);
  • Mathematica
    With[{nn=30},Join[{0},Accumulate[BellB[Range[0,nn-1]]Range[nn]]]] (* Harvey P. Dale, Nov 10 2014 *)
  • SageMath
    [sum(j*bell_number(j-1) for j in range(1,1+n)) for n in range(31)] # G. C. Greubel, May 11 2024

Formula

a(n) = Sum_{k=0..n} k * A177254(n,k).

A177256 Triangle read by rows: T(n,k) is the number of partitions of the set {1,2,...,n} having exactly k blocks that do not consist of consecutive integers (0<=k<=floor(n/2); a singleton is considered a block of consecutive integers).

Original entry on oeis.org

1, 1, 2, 0, 4, 1, 8, 6, 1, 16, 25, 11, 32, 89, 77, 5, 64, 290, 433, 90, 128, 893, 2132, 951, 36, 256, 2645, 9602, 7710, 934, 512, 7618, 40589, 53137, 13790, 329, 1024, 21489, 163739, 328119, 152600, 11599, 2048, 59665, 637587, 1872748, 1409791, 228103
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Row n contains 1+ floor(n/2) entries.
Sum of entries in row n = A000110(n) (the Bell numbers).
T(n,0) = 2^{n-1} (A000079).
Sum(k*a(n,k),k>=0) = A177257(n).

Examples

			T(4,1)=6 because we have 134-2, 124-3, 14-23, 1-24-3, 14-2-3, and 13-2-4.
Triangle starts:
1;
1;
2,0;
4,1;
8,6,1;
16,25,11;
32,89,77,5;
		

Crossrefs

Programs

  • Maple
    Q[0] := 1: for n to 12 do Q[n] := expand(u*subs(w = v, diff(Q[n-1], u))+u*subs(w = v, diff(Q[n-1], v))+w*(diff(Q[n-1], w))+w*subs(w = v, Q[n-1])) end do: for n from 0 to 12 do P[n] := sort(expand(subs({v = 1, w = 1}, Q[n]))) end do: for n from 0 to 12 do seq(coeff(P[n], u, j), j = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

The row generating polynomial P[n](u) is given by P[n](u)=Q[n](u,1,1), where Q[n](u,v,w) is obtained recursively from Q[n](u,v,w) =u(dQ[n-1]/du){w=v} + u(dQ[n-1]/dv){w=v} + w(dQ[n-1]/dw) + w(Q[n-1])_{w=v}, Q[0]=1. Here Q[n](u,v,w) is the trivariate generating polynomial of the partitions of {1,2,...,n}, where u marks blocks that do not consist of consecutive integers, v marks blocks consisting of consecutive integers and not ending with n, and w marks blocks consisting of consecutive integers and ending with n.

A177257 a(n) = Sum_{j=0..n-1} (binomial(n,j) - (j+1))*A000110(j).

Original entry on oeis.org

0, 0, 0, 1, 8, 47, 258, 1426, 8154, 48715, 305012, 2001719, 13754692, 98801976, 740584196, 5782218745, 46942426080, 395607218279, 3455493024350, 31236784338746, 291836182128670, 2814329123555051, 27980637362452980
Offset: 0

Views

Author

Emeric Deutsch, May 07 2010

Keywords

Comments

Number of blocks not consisting of consecutive integers in all partitions of the set {1,2,...,n} (a singleton is considered a block of consecutive integers). Example: a(3)=1 because in 1-2-3, 1-23, 12-3, 13-2, and 123 only the block 13 does not consist of consecutive integers.

Crossrefs

Programs

  • Magma
    A177257:= func< n | n eq 0 select 0 else (&+[(Binomial(n,j)-(j+1))*Bell(j): j in [0..n-1]]) >;
    [A177257(n): n in [0..30]]; // G. C. Greubel, May 12 2024
    
  • Maple
    with(combinat): a:= proc(n) add((binomial(n, j)-j-1)*bell(j), j = 0 .. n-1) end proc: seq(a(n), n = 0 .. 22);
  • Mathematica
    Table[Sum[(Binomial[n,j]-j-1)BellB[j],{j,0,n-1}],{n,0,30}] (* Harvey P. Dale, Oct 15 2015 *)
  • SageMath
    def A177257(n): return sum((binomial(n,j) -(j+1))*bell_number(j) for j in range(n))
    [A177257(n) for n in range(31)] # G. C. Greubel, May 12 2024

Formula

a(n) = Sum_{j=0..n-1} (binomial(n,j) - (j+1))*Bell(j), where Bell(n) = A000110(n) are the Bell numbers.
a(n) = Sum_{k=0..floor(n/2)} k*A177256(n,k).
a(n) = A005493(n-1) - A177255(n).

A168444 Number of partitions of the set {1,2,...,n} such that no block is a sequence of consecutive integers (including 1-element blocks).

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 21, 91, 422, 2103, 11226, 63879, 385691, 2461004, 16535820, 116628147, 861033654, 6637143698, 53297137552, 444940442553, 3854539901147, 34592812084693, 321125878230123, 3079144039478532, 30457076370822777, 310407099470429818, 3255972198123974137, 35114803641531204063
Offset: 0

Views

Author

Richard Stanley, Nov 25 2009

Keywords

Comments

Some similar results appear in Klazar (see links).

Examples

			For n=5 the a(5) = 5 partitions are 13-245, 14-235, 24-135, 25-135, 35-124.
		

References

  • Richard Stanley, Enumerative Combinatorics, volume 1, second edition, Cambridge Univ Press, 2011, page 192, solution 111.

Crossrefs

Column k=0 of A177254.

Programs

  • Magma
    b:= func< n | n eq 0 select 1 else (&+[(-1)^(n+j)*Binomial(j,n-j)*Bell(j): j in [Ceiling(n/2)..n]]) >;
    A168444:= func< n | n eq 0 select 1 else b(n)-b(n-1) >;
    [A168444(n): n in [0..30]]; // G. C. Greubel, May 12 2024
    
  • Maple
    with(combinat): y:=sum(bell(n)*x^n,n=0..20): z:=(1-x)*subs(x=x*(1-x),y): taylor(z,x=0,21);
  • Mathematica
    nn = 20; b := Sum[BellB[n] (x - x^2)^n, {n, 0, nn}]; CoefficientList[ Series[ (1-x) b, {x, 0, nn}], x] (* Geoffrey Critzer, Jun 01 2013 *)
  • Maxima
    b(n):=if n=0 then 1 else sum(binomial(k,n-k)*(-1)^(n-k)*belln(k),k,ceiling(n/2),n); a(n):=if n=0 then 1 else b(n)-b(n-1); /* Vladimir Kruchinin, Sep 09 2010 */
    
  • PARI
    N=66;  x = 'x+O('x^N);
    B = serlaplace(exp(exp(x)-1));
    gf = (1-x)*subst(B,'x, x*(1-x));
    Vec(gf) \\ Joerg Arndt, Jun 01 2013
    
  • SageMath
    @CachedFunction
    def b(n): return 1 if (n==0) else sum((-1)^(n+j)*binomial(j,n-j)*bell_number(j) for j in range((n//2), n+1))
    def A168444(n): return 1 if (n==0) else b(n) - b(n-1)
    [A168444(n) for n in range(31)] # G. C. Greubel, May 12 2024

Formula

Ordinary g.f.: (1-x)F(x(1-x)), where F(x) = sum_{n>=0} B(n)x^n (the ordinary g.f. for the Bell numbers)
a(n) = b(n)-b(n-1), b(n) = if n=0 then 1 else sum(binomial(k,n-k)*(-1)^(n-k)*B(k),k=ceiling(n/2)..n). - Vladimir Kruchinin, Sep 09 2010

Extensions

Added more terms, Joerg Arndt, Jun 01 2013
Showing 1-4 of 4 results.