cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A177274 Periodic sequence: Repeat 1, 2, 3, 4, 5, 6, 7, 8, 9.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6
Offset: 0

Views

Author

Klaus Brockhaus, May 07 2010

Keywords

Comments

Interleaving of A131669 and A131669 without first five terms.
Continued fraction expansion of (684125+sqrt(635918528029))/1033802.
Decimal expansion of 13717421/111111111.
a(n) = A010888(n+1) = A010878(n)+1 = A117230(n+2)-1.
a(n) = A064806(n+1)-n-1.
Essentially first differences of A037123.

Crossrefs

Cf. A131669 (odd digits followed by positive even digits), A010888 (digital root of n), A010878 (n mod 9), A117230 (1 followed by (repeat 2, 3, 4, 5, 6, 7, 8, 9, 10), offset 1), A064806 (n + digital root of n), A037123, A177270 (decimal expansion of (684125+sqrt(635918528029))/1033802).

Programs

  • Magma
    &cat[ [1, 2, 3, 4, 5, 6, 7, 8, 9]: k in [1..12] ];
  • Mathematica
    PadRight[{},120,Range[9]] (* Paolo Xausa, Jan 08 2024 *)

Formula

a(n) = (n mod 9)+1.
a(n) = a(n-9) for n > 8; 1; a(n) = n+1 for n <= 8.
G.f.: (1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+7*x^6+8*x^7+9*x^8)/(1-x^9). [corrected by Georg Fischer, May 11 2019]

A177271 Decimal expansion of sqrt(635918528029).

Original entry on oeis.org

7, 9, 7, 4, 4, 5, 0, 0, 0, 0, 0, 2, 5, 0, 8, 0, 0, 9, 9, 5, 6, 7, 9, 5, 5, 8, 4, 5, 7, 7, 0, 2, 8, 2, 6, 7, 9, 1, 1, 8, 8, 3, 1, 4, 7, 5, 2, 4, 6, 2, 4, 2, 1, 7, 4, 8, 3, 7, 3, 9, 2, 0, 0, 9, 2, 3, 7, 7, 2, 6, 0, 4, 9, 3, 7, 1, 7, 8, 6, 4, 0, 9, 4, 7, 9, 3, 8, 5, 3, 3, 2, 5, 5, 2, 2, 9, 5, 9, 7, 7, 3, 9, 3, 0, 0
Offset: 6

Views

Author

Klaus Brockhaus, May 07 2010

Keywords

Comments

Continued fraction expansion of sqrt(635918528029) is 797445 followed by (repeat 398722, 1, 1, 398722, 1594890).
sqrt(635918528029) = sqrt(17)*sqrt(53)*sqrt(193)*sqrt(3656953).

Examples

			sqrt(635918528029) = 797445.00000250800995679558...
		

Crossrefs

Cf. A010473 (decimal expansion of sqrt(17)), A010506 (decimal expansion of sqrt(53)), A177272 (decimal expansion of sqrt(193)), A177273 (decimal expansion of sqrt(3656953)), A177274 (continued fraction expansion of (684125+sqrt(635918528029))/1033802), A177270 (decimal expansion of (684125+sqrt(635918528029))/1033802).

Programs

  • Mathematica
    First[RealDigits[Sqrt[635918528029],10,120]] (* Paolo Xausa, Jan 09 2024 *)

A177933 Decimal expansion of (232405+sqrt(71216963807))/348378.

Original entry on oeis.org

1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2, 2, 2, 9, 1, 1, 3, 0, 6, 9, 3, 4, 5, 3, 5, 5, 4, 9, 7, 5, 2, 3, 5, 5, 5, 7, 3, 6, 9, 3, 4, 0, 0, 8, 4, 0, 6, 9, 9, 9, 7, 1, 4, 6, 6, 5, 9, 6, 4, 6, 7, 0, 3, 1, 7, 6, 1, 3, 7, 8, 0, 1, 6, 6, 3, 2, 3, 6, 8, 1, 2, 3, 2, 5, 7, 5, 9, 2, 8, 7, 6, 3, 6, 4, 5, 9, 6, 2, 1, 6, 8, 8, 9, 9
Offset: 1

Views

Author

Klaus Brockhaus, May 15 2010

Keywords

Comments

Continued fraction expansion of (232405+sqrt(71216963807))/348378 is A010889.
Agrees with A060997 for n < 14, with A177270 for n < 13, with A177034 for n < 11, with A177160 for n < 9.

Examples

			(232405+sqrt(71216963807))/348378 = 1.43312742672229113069...
		

Crossrefs

Cf. A177934 (decimal expansion of sqrt(71216963807)), A010889 (repeat 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), A060997 (decimal representation of continued fraction 1, 2, 3, 4, 5, 6, 7, ...), A177270 (decimal expansion of (684125+sqrt(635918528029))/1033802), A177034 (decimal expansion of (9280+3*sqrt(13493990))/14165), A177160 (decimal expansion of (4502+sqrt(29964677))/6961).

Programs

  • Mathematica
    First[RealDigits[(232405+Sqrt[71216963807])/348378,10,120]] (* Paolo Xausa, Jan 09 2024 *)
Showing 1-3 of 3 results.