cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A373169 Square array read by ascending antidiagonals: T(n,k) = noz(T(n,k-1) + (k-1)*(n-2) + 1), with T(n,1) = 1, n >= 2, k >= 1, where noz(n) = A004719(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 1, 5, 1, 6, 12, 16, 6, 6, 1, 7, 15, 22, 25, 12, 7, 1, 8, 18, 28, 35, 36, 19, 8, 1, 9, 21, 34, 45, 51, 49, 27, 9, 1, 1, 24, 4, 55, 66, 7, 64, 36, 1, 1, 11, 18, 46, 29, 81, 91, 29, 81, 46, 2, 1, 12, 3, 43, 75, 6, 112, 12, 54, 1, 57, 3
Offset: 2

Views

Author

Paolo Xausa, May 27 2024

Keywords

Comments

Row n is the zeroless analog of the positive n-gonal numbers.

Examples

			The array begins:
  n\k|  1  2   3   4   5    6    7    8    9   10  ...
  ----------------------------------------------------
   2 |  1, 2,  3,  4,  5,   6,   7,   8,   9,   1, ... = A177274
   3 |  1, 3,  6,  1,  6,  12,  19,  27,  36,  46, ... = A243658 (from n = 1)
   4 |  1, 4,  9, 16, 25,  36,  49,  64,  81,   1, ... = A370812
   5 |  1, 5, 12, 22, 35,  51,   7,  29,  54,  82, ... = A373171
   6 |  1, 6, 15, 28, 45,  66,  91,  12,  45,  82, ... = A373172
   7 |  1, 7, 18, 34, 55,  81, 112, 148, 189, 235, ...
   8 |  1, 8, 21,  4, 29,   6,  43,  86, 135,  19, ...
   9 |  1, 9, 24, 46, 75, 111, 154,  24,  81, 145, ...
  10 |  1, 1, 18, 43, 76, 117, 166, 223, 288, 361, ...
  ...      |                                     \______ A373170 (main diagonal)
        A004719 (from n = 2)
		

Crossrefs

Cf. rows 2..6: A177274, A243658, A370812, A373171, A373172.
Cf. A373170 (main diagonal).

Programs

  • Mathematica
    noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
    A373169[n_, k_] := A373169[n, k] = If[k == 1, 1, noz[A373169[n, k-1] + (k-1)*(n-2) + 1]];
    Table[A373169[n - k + 1, k], {n, 2, 15}, {k, n - 1}]
  • PARI
    noz(n) = fromdigits(select(sign, digits(n)));
    T(n,k) = if (k==1, 1, noz(T(n,k-1) + (k-1)*(n-2) + 1));
    matrix(7,7,n,k,T(n+1,k)) \\ Michel Marcus, May 30 2024

A177270 Decimal expansion of (684125+sqrt(635918528029))/1033802.

Original entry on oeis.org

1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2, 4, 3, 7, 0, 8, 2, 7, 2, 5, 3, 9, 5, 7, 3, 1, 9, 2, 7, 1, 0, 2, 8, 9, 4, 7, 4, 3, 0, 8, 2, 6, 3, 5, 5, 0, 7, 0, 5, 3, 0, 1, 5, 7, 1, 1, 3, 0, 0, 5, 3, 9, 2, 6, 4, 1, 6, 9, 7, 9, 3, 1, 4, 5, 8, 0, 3, 4, 1, 6, 9, 9, 3, 5, 7, 6, 9, 6, 4, 7, 6, 2, 6, 1, 6, 9, 8, 0, 5, 9, 5, 8, 2, 9
Offset: 1

Views

Author

Klaus Brockhaus, May 07 2010

Keywords

Comments

Continued fraction expansion of (684125+sqrt(635918528029))/1033802 is A177274.
Agrees with A060997 for n < 13.

Examples

			(684125+sqrt(635918528029))/1033802 = 1.43312742672437082725...
		

Crossrefs

Cf. A060997, A177271 (decimal expansion of sqrt(635918528029)), A177274 (repeat 1, 2, 3, 4, 5, 6, 7, 8, 9).

Programs

  • Mathematica
    First[RealDigits[(684125+Sqrt[635918528029])/1033802,10,120]] (* Paolo Xausa, Jan 09 2024 *)

A177271 Decimal expansion of sqrt(635918528029).

Original entry on oeis.org

7, 9, 7, 4, 4, 5, 0, 0, 0, 0, 0, 2, 5, 0, 8, 0, 0, 9, 9, 5, 6, 7, 9, 5, 5, 8, 4, 5, 7, 7, 0, 2, 8, 2, 6, 7, 9, 1, 1, 8, 8, 3, 1, 4, 7, 5, 2, 4, 6, 2, 4, 2, 1, 7, 4, 8, 3, 7, 3, 9, 2, 0, 0, 9, 2, 3, 7, 7, 2, 6, 0, 4, 9, 3, 7, 1, 7, 8, 6, 4, 0, 9, 4, 7, 9, 3, 8, 5, 3, 3, 2, 5, 5, 2, 2, 9, 5, 9, 7, 7, 3, 9, 3, 0, 0
Offset: 6

Views

Author

Klaus Brockhaus, May 07 2010

Keywords

Comments

Continued fraction expansion of sqrt(635918528029) is 797445 followed by (repeat 398722, 1, 1, 398722, 1594890).
sqrt(635918528029) = sqrt(17)*sqrt(53)*sqrt(193)*sqrt(3656953).

Examples

			sqrt(635918528029) = 797445.00000250800995679558...
		

Crossrefs

Cf. A010473 (decimal expansion of sqrt(17)), A010506 (decimal expansion of sqrt(53)), A177272 (decimal expansion of sqrt(193)), A177273 (decimal expansion of sqrt(3656953)), A177274 (continued fraction expansion of (684125+sqrt(635918528029))/1033802), A177270 (decimal expansion of (684125+sqrt(635918528029))/1033802).

Programs

  • Mathematica
    First[RealDigits[Sqrt[635918528029],10,120]] (* Paolo Xausa, Jan 09 2024 *)

A262734 Period 16: repeat (1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2015

Keywords

Comments

Decimal expansion of 111111112/900000009.
For n which lies in the interval [16*(k-1), 8*(2*k-1)], where k>0 -> pattern {1, 2, 3, 4, 5, 6, 7, 8, 9}; for n which lies in the interval [16*k - 7, 16*k - 1], where k>0 -> pattern {8, 7, 6, 5, 4, 3, 2}.

Crossrefs

Programs

  • Magma
    &cat[[1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2]: n in [0..10]]; // Vincenzo Librandi, Sep 29 2015
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, -1, 1}, {1, 2, 3, 4, 5, 6, 7, 8, 9}, 120] (* Vincenzo Librandi, Sep 29 2015 *)
  • PARI
    Vec(-(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)*(x^8+1)) + O(x^100)) \\ Colin Barker, Sep 29 2015
    
  • PARI
    111111112/900000009. \\ Altug Alkan, Sep 29 2015
    
  • PARI
    vector(200, n, default(realprecision, n+2); floor(111111112/900000009*10^n)%10) \\ Altug Alkan, Nov 12 2015

Formula

-1 + a(16*(k - 1)) = -2 + a(8*k + 3*(-1)^k - 4) = -3 + a(2*(4*k + (-1)^k - 2)) = -4 + a(8*k + (-1)^k - 4) = -5 + a(4*(2*k - 1)) = -6 + a(8*k - (-1)^k - 4) = -7 + a(-2*(-4*k + (-1)^k + 2)) = -8 + a(8*k - 3*(-1)^k - 4) = -9 + a(8*(2*k - 11)) = 0, for k>0.
a(0) = 1, a(n) = a(n+1) - 1, for 16*(k - 1) <= n < 8*(2*k - 1), and a(n) = a(n + 1) + 1, for 8*(2*k - 1) <= n < 16*k, where k>0.
From Colin Barker, Sep 29 2015: (Start)
a(n) = a(n-1) - a(n-8) + a(n-9) for n>8.
G.f.: -(2*x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1) / ((x-1)*(x^8+1)). (End)

A306309 The "zeroless Pascal triangle" read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 1, 1, 5, 1, 1, 6, 6, 2, 6, 6, 1, 1, 7, 12, 8, 8, 12, 7, 1, 1, 8, 19, 2, 16, 2, 19, 8, 1, 1, 9, 27, 21, 18, 18, 21, 27, 9, 1, 1, 1, 36, 48, 39, 36, 39, 48, 36, 1, 1, 1, 2, 37, 84, 87, 75, 75, 87, 84, 37, 2, 1
Offset: 0

Views

Author

Rémy Sigrist, Feb 06 2019

Keywords

Comments

Left and right edges are all 1's, interior entries are obtained by removing zeros from the sum of the two numbers above them.
For any k >= 0 and n >= 0, let d_k(n) = T(n+k, k).
For any k >= 0, d_k is eventually periodic: by induction:
- for k = 0: for any n >= 0, d_0(n) = 1, hence d_0 is 1-periodic,
- suppose that the property is true for some k >= 0,
- d_k is eventually p_k-periodic, and so d_k is bounded, say by m_k,
- d_{k+1}(n+1) - d_{k+1}(n) = d_k(n+1) <= m_k,
- so the first difference of d_{k+1} is bounded by m_k,
- A004719 has arbitrary large gaps,
and we can choose a range of m_k+1 terms that do not belong to A004719,
say x_k..x_k+m_k (with x_k > 1),
- d_{k+1}(0) = 1 < x_k,
and if d_{k+1}(n) < x_k, then d_{k+1)(n+1) < x_k,
so d_{k+1} is bounded by x_k,
- let D_{k+1}(n) = d_{k+1}(n*p_k},
- D_{k+1} is bounded,
so D_{k+1}(n + q_k) = D_{k+1}(n) for some n >= 0 and q_k > 0,
- we can assume that n*p_k is beyond the transient part of d_k,
- d_{k+1}(n*p_k + q_k*p_k + 1) = d_{k+1}(n*p_k+q_k*p_k) + d_k(n*p_k+q_k*p_k + 1)
= d_{k+1}(n*p_k) + d_k(n*p_k + 1)
= d_{k+1}(n*p_k + 1),
- we can generalize: for any m >= n*p_k, d_{k+1}(m + q_k*p_k) = d_{k+1)(m),
- and d_{k+1} is (at least q_k*p_k-)periodic, QED.

Examples

			Triangle begins:
                    1
                  1   1
                1   2   1
              1   3   3   1
            1   4   6   4   1
          1   5   1   1   5   1
        1   6   6   2   6   6   1
      1   7  12   8   8  12   7   1
    1   8  19   2  16   2  19   8   1
  1   9  27  21  18  18  21  27   9   1
...
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

T(n, 0) = T(n, n) = 1 for n >= 0.
T(n, k) = A004719(T(n-1, k-1) + T(n-1, k)) for n >= 0 and k = 1..n-1.
T(n, 1) = A177274(n-1) for any n > 0.
Showing 1-5 of 5 results.