A177342 a(n) = (4*n^3-3*n^2+5*n-3)/3.
1, 9, 31, 75, 149, 261, 419, 631, 905, 1249, 1671, 2179, 2781, 3485, 4299, 5231, 6289, 7481, 8815, 10299, 11941, 13749, 15731, 17895, 20249, 22801, 25559, 28531, 31725, 35149, 38811, 42719, 46881, 51305, 55999, 60971, 66229, 71781, 77635
Offset: 1
Links
- B. Berselli, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[(4*n^3-3*n^2+5*n-3)/3: n in [1..39]]; // Bruno Berselli, Aug 24 2011
-
Magma
I:=[1,9,31,75]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
-
Mathematica
CoefficientList[Series[(1 + 5 x + x^2 + x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *) Table[(4 n^3 - 3 n^2 + 5 n - 3)/3, {n, 1, 40}] (* Bruno Berselli, Feb 17 2015 *) LinearRecurrence[{4,-6,4,-1},{1,9,31,75},40] (* Harvey P. Dale, Jul 31 2021 *)
-
PARI
a(n)=(4*n^3-3*n^2+5*n-3)/3 \\ Charles R Greathouse IV, Jun 23 2011
Formula
Extensions
Formulae added and revised by Bruno Berselli, Feb 17 2015
Comments