A177427 Numerators of the Inverse Akiyama-Tanigawa transform of the aerated even-indexed Bernoulli numbers 1, 0, 1/6, 0, -1/30, 0, 1/42, ...
1, 1, 13, 7, 149, 157, 383, 199, 7409, 7633, 86231, 88331, 1173713, 1197473, 1219781, 620401, 42862943, 43503583, 279379879, 283055551, 57313183, 19328341, 449489867, 1362695813, 34409471059, 34738962067, 315510823603, 45467560829, 9307359944587, 9382319148907, 293103346860157, 147643434162641, 594812856101039, 54448301591149
Offset: 0
Examples
The table T(n,k) of fractions generated by the Akiyama-Tanigawa transform, with the column T(n,0) equal to Bernoulli(n) for even n and equal to 0 for odd n, starts in row n=0 as: 1, 1, 13/12, 7/6, 149/120, 157/120, 383/280, 199/140, ... 0, -1/6, -1/4, -3/10, -1/3, -5/14, -3/8, -7/18, -2/5, -9/22, ... 1/6, 1/6, 3/20, 2/15, 5/42, 3/28, 7/72, 4/45, 9/110, 5/66, ... 0, 1/30, 1/20, 2/35, 5/84, 5/84, 7/120, 28/495, 3/55, 15/286, ... -1/30, -1/30, -3/140, -1/105, 0, 1/140, 49/3960, 8/495, ... 0, -1/42, -1/28, -4/105, -1/28, -29/924, -7/264, -28/1287, -87/5005, ... 1/42, 1/42, 1/140, -1/105, -5/231, -9/308, -343/10296, -1576/45045, ...
Links
- L. A. Medina, V. H. Moll, E. S. Rowland, Iterated primitives of logarithmic powers, arXiv:0911.1325, arXiv:0911.1325 [math.NT], 2009-2010.
- D. Merlini, R. Sprugnoli, M. C. Verri, The Akiyama-Tanigawa Transformation, Integers, 5 (1) (2005) #A05.
Crossrefs
Cf. A177690 (denominators).
Programs
-
Mathematica
t[n_, 0] := BernoulliB[n]; t[1, 0]=0; t[n_, k_] := t[n, k] = (t[n, k-1] + (k-1)*t[n, k-1] - t[n+1, k-1])/k; Table[t[0, k], {k, 0, 33}] // Numerator (* Jean-François Alcover, Aug 09 2012 *)
Formula
From Groux Roland, Jan 07 2011: (Start)
T(0,k) = H(k)/2 + 1/(k+1) with H(k) harmonic number of order k.
T(0,k)= -(1/2)*(k+1)*Integral_{x=0..1} x^n*log(x*(1-x)) dx.
G.f.: Sum_{k>=0} T(0,k) x^k = (x-2)*(log(1-x))/(2*x*(1-x)). (End)
(T(1,n))^2 = A181318(n)/A061038(n+2). - Paul Curtz, Jul 19 2011, index corrected by R. J. Mathar, Sep 09 2011
Comments