A177466 a(n) = binomial(n^3, n^2) / (n^2 + n + 1).
10, 360525, 23263187479980, 4195317468983232014706855, 3118254010126197540790713959812283024388, 13329519847131745416659896296893907619682838146506167497550
Offset: 2
Keywords
Examples
For n = 2, a(2) = binomial(8,4)/7 = 70/7 = 10.
Links
- G. C. Greubel, Table of n, a(n) for n = 2..23
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Programs
-
Magma
[Binomial(n^3,n^2)/(n^2+n+1): n in [2..12]]; // G. C. Greubel, Jul 18 2024
-
Maple
A177466 := proc(n) binomial(n^3,n^2)/(n^2+n+1); end proc: seq(A177466(n),n=2..10) ; # R. J. Mathar, Dec 06 2010
-
Mathematica
Table[Binomial[n^3,n^2]/(n^2+n+1),{n,2,7}] (* Harvey P. Dale, Jan 24 2019 *)
-
SageMath
[binomial(n^3,n^2)/(n^2+n+1) for n in range(2,13)] # G. C. Greubel, Jul 18 2024
Comments