A177493 Products of cubes of 2 or more distinct primes.
216, 1000, 2744, 3375, 9261, 10648, 17576, 27000, 35937, 39304, 42875, 54872, 59319, 74088, 97336, 132651, 166375, 185193, 195112, 238328, 274625, 287496, 328509, 343000, 405224, 456533, 474552, 551368, 614125, 636056, 658503, 753571, 804357, 830584, 857375
Offset: 1
Keywords
Examples
216 = 2^3 * 3^3. 9261 = 3^3 * 7^3. 27000 = 2^3 * 3^3 * 5^3.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Programs
-
Maple
q:= n-> not isprime(n) and numtheory[issqrfree](n): map(x-> x^3, select(q, [$4..120]))[]; # Alois P. Heinz, Aug 02 2024
-
Mathematica
f1[n_]:=Length[Last/@FactorInteger[n]]; f2[n_]:=Union[Last/@FactorInteger[n]]; lst={};Do[If[f1[n]>1&&f2[n]=={3},AppendTo[lst,n]],{n,0,9!}];lst Reap[Do[{p, e}=Transpose[FactorInteger[n]]; If[Length[p]>1 && Union[e]=={3}, Sow[n]], {n, 343000}]][[2, 1]]
-
PARI
[k^3 | k<-[1..100], k>1 && !isprime(k) && issquarefree(k)] \\ Andrew Howroyd, Jan 14 2020
-
Python
from math import isqrt from sympy import primepi, mobius def A177493(n): def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n+1, f(n+1) while m != k: m, k = k, f(k) return m**3 # Chai Wah Wu, Aug 02 2024
Formula
a(n) = A120944(n)^3. - R. J. Mathar, Dec 06 2010
Extensions
Definition corrected by R. J. Mathar, Dec 06 2010
Terms a(25) and beyond from Andrew Howroyd, Jan 14 2020