cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177493 Products of cubes of 2 or more distinct primes.

Original entry on oeis.org

216, 1000, 2744, 3375, 9261, 10648, 17576, 27000, 35937, 39304, 42875, 54872, 59319, 74088, 97336, 132651, 166375, 185193, 195112, 238328, 274625, 287496, 328509, 343000, 405224, 456533, 474552, 551368, 614125, 636056, 658503, 753571, 804357, 830584, 857375
Offset: 1

Views

Author

Keywords

Examples

			216 = 2^3 * 3^3.
9261 = 3^3 * 7^3.
27000 = 2^3 * 3^3 * 5^3.
		

Crossrefs

Programs

  • Maple
    q:= n-> not isprime(n) and numtheory[issqrfree](n):
    map(x-> x^3, select(q, [$4..120]))[];  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    f1[n_]:=Length[Last/@FactorInteger[n]]; f2[n_]:=Union[Last/@FactorInteger[n]]; lst={};Do[If[f1[n]>1&&f2[n]=={3},AppendTo[lst,n]],{n,0,9!}];lst
    Reap[Do[{p, e}=Transpose[FactorInteger[n]]; If[Length[p]>1 && Union[e]=={3}, Sow[n]], {n, 343000}]][[2, 1]]
  • PARI
    [k^3 | k<-[1..100], k>1 && !isprime(k) && issquarefree(k)] \\ Andrew Howroyd, Jan 14 2020
    
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A177493(n):
        def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n+1, f(n+1)
        while m != k:
            m, k = k, f(k)
        return m**3 # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A120944(n)^3. - R. J. Mathar, Dec 06 2010

Extensions

Definition corrected by R. J. Mathar, Dec 06 2010
Terms a(25) and beyond from Andrew Howroyd, Jan 14 2020