cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177511 A053735-perfect numbers.

Original entry on oeis.org

3, 26, 62, 74, 77, 133, 134, 143, 155, 161, 185, 203, 206, 209, 215, 218, 319, 323, 341, 386, 398, 458, 473, 542, 545, 551, 554, 562, 565, 581, 589, 611, 614, 629, 635, 662, 671, 695, 698, 703, 706, 707, 713, 718, 721, 889, 899, 913, 959, 965, 998
Offset: 1

Views

Author

Vladimir Shevelev, Dec 11 2010

Keywords

Comments

For definition, see A175522.

Crossrefs

Programs

  • Maple
    A053735 := proc(n) add(d, d=convert(n,base,3)) ;end proc:
    isA177511 := proc(n) local a,d ; a := 0 ; for d in numtheory[divisors](n) minus {n} do a := a+A053735(d) ; end do: a = A053735(n) ;end proc:
    for n from 1 to 1000 do if isA177511(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar
  • PARI
    isok(n) = sumdiv(n, d, (dMichel Marcus, Feb 06 2016
  • Sage
    A053735 = lambda n: sum(n.digits(base=3))
    is_A177511 = lambda n: sum(A053735(d) for d in divisors(n)) == 2*A053735(n)
    # D. S. McNeil, Dec 11 2010
    

Formula

{n : sum_{d|n, dA053735(d) = A053735(n)}.

Extensions

Extended by D. S. McNeil, Dec 11 2010