A177511 A053735-perfect numbers.
3, 26, 62, 74, 77, 133, 134, 143, 155, 161, 185, 203, 206, 209, 215, 218, 319, 323, 341, 386, 398, 458, 473, 542, 545, 551, 554, 562, 565, 581, 589, 611, 614, 629, 635, 662, 671, 695, 698, 703, 706, 707, 713, 718, 721, 889, 899, 913, 959, 965, 998
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A053735 := proc(n) add(d, d=convert(n,base,3)) ;end proc: isA177511 := proc(n) local a,d ; a := 0 ; for d in numtheory[divisors](n) minus {n} do a := a+A053735(d) ; end do: a = A053735(n) ;end proc: for n from 1 to 1000 do if isA177511(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar
-
PARI
isok(n) = sumdiv(n, d, (d
Michel Marcus, Feb 06 2016 -
Sage
A053735 = lambda n: sum(n.digits(base=3)) is_A177511 = lambda n: sum(A053735(d) for d in divisors(n)) == 2*A053735(n) # D. S. McNeil, Dec 11 2010
Formula
{n : sum_{d|n, dA053735(d) = A053735(n)}.
Extensions
Extended by D. S. McNeil, Dec 11 2010
Comments