A177523 Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up.
1, 1, 2, 6, 24, 119, 709, 4928, 39144, 349776, 3472811, 37928331, 451891992, 5832672456, 81074690424, 1207441809209, 19181203110129, 323753459184738, 5785975294622694, 109149016813544376, 2167402030585724571, 45190632809497874161, 987099099863360190632
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 6*x^3/3! + 24*x^4/4! + 119*x^5/5! + 709*x^6/6! +... where A(x) = 1/(1 - x + x^5/5! - x^6/6! + x^10/10! - x^11/11! + x^15/15! - x^16/16! + x^20/20! +...).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400 (terms n = 1..40 from Ray Chandler)
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes
- Ira M. Gessel, Yan Zhuang, Counting permutations by alternating descents , 2014. See displayed equation before Eq. (3), and set m=5. - _N. J. A. Sloane_, Aug 11 2014
- Kaarel Hänni, Asymptotics of descent functions, arXiv:2011.14360 [math.CO], Nov 29 2020, p. 14.
- Mingjia Yang, Doron Zeilberger, Increasing Consecutive Patterns in Words, arXiv:1805.06077 [math.CO], 2018.
- Mingjia Yang, An experimental walk in patterns, partitions, and words, Ph. D. Dissertation, Rutgers University (2020).
Programs
-
Mathematica
Table[n!*SeriesCoefficient[1/(Sum[x^(5*k)/(5*k)!-x^(5*k+1)/(5*k+1)!,{k,0,n}]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 11 2013 *) FullSimplify[CoefficientList[Series[10*E^((1+Sqrt[5])*x/4) / ((5+Sqrt[5]) * Cos[Sqrt[(5-Sqrt[5])/2]*x/2] + (5-Sqrt[5]) * E^(Sqrt[5]*x/2) * Cos[Sqrt[(5+Sqrt[5])/2]*x/2] - Sqrt[2*(5-Sqrt[5])] * Sin[Sqrt[(5-Sqrt[5])/2]*x/2] - Sqrt[2*(5+Sqrt[5])] * E^(Sqrt[5]*x/2) * Sin[Sqrt[(5+Sqrt[5])/2]*x/2]),{x,0,20}],x]*Range[0,20]!] (* Vaclav Kotesovec, Aug 29 2014 *)
-
PARI
{a(n)=n!*polcoeff(1/sum(m=0, n\5+1, x^(5*m)/(5*m)!-x^(5*m+1)/(5*m+1)!+x^2*O(x^n)), n)}
Formula
E.g.f.: 1/( Sum_{n>=0} x^(5*n)/(5*n)! - x^(5*n+1)/(5*n+1)! ).
a(n)/n! ~ c * (1/r)^n, where r = 1.007187547786015395418998654... is the root of the equation Sum_{n>=0} (r^(5*n)/(5*n)! - r^(5*n+1)/(5*n+1)!) = 0, c = 1.02806793756750152.... - Vaclav Kotesovec, Dec 11 2013
Equivalently, r = 1.00718754778601539541899865400272701484... is the root of the equation (5+sqrt(5)) * cos(sqrt((5-sqrt(5))/2)*r/2) + (5-sqrt(5)) * exp(sqrt(5)*r/2) * cos(sqrt((5+sqrt(5))/2)*r/2) - sqrt(2*(5-sqrt(5))) * sin(sqrt((5-sqrt(5))/2)*r/2) - sqrt(2*(5+sqrt(5))) * exp(sqrt(5)*r/2) * sin(sqrt((5+sqrt(5))/2)*r/2) = 0. - Vaclav Kotesovec, Aug 29 2014
E.g.f.: 10*exp((1+sqrt(5))*x/4) / ((5+sqrt(5)) * cos(sqrt((5-sqrt(5))/2)*x/2) + (5-sqrt(5)) * exp(sqrt(5)*x/2) * cos(sqrt((5+sqrt(5))/2)*x/2) - sqrt(2*(5-sqrt(5))) * sin(sqrt((5-sqrt(5))/2)*x/2) - sqrt(2*(5+sqrt(5))) * exp(sqrt(5)*x/2) * sin(sqrt((5+sqrt(5))/2)*x/2)). - Vaclav Kotesovec, Aug 29 2014
In closed form, c = 5*exp((1+sqrt(5))*r/4) / (r*((5 + sqrt(5)) * cos(sqrt((5 - sqrt(5))/2)*r/2) + (5 - sqrt(5)) * exp(sqrt(5)*r/2) * cos(sqrt((5 + sqrt(5))/2)*r/2))) = 1.0280679375675015201596831656779442465978511664638... . Vaclav Kotesovec, Feb 01 2015
Extensions
More terms from Ray Chandler, Dec 06 2011
a(0)=1 prepended by Alois P. Heinz, Jan 13 2015
Comments