A177533 Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up, up.
1, 1, 2, 6, 24, 120, 719, 5027, 40168, 361080, 3606480, 39623760, 474915803, 6166512899, 86227808578, 1291868401830, 20645144452320, 350547210173280, 6302294420371031, 119600213982762899, 2389140113204434900, 50111866901959213980, 1101140993932295832120
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (terms n = 1..30 from Ray Chandler)
- R. E. L. Aldred, M. D. Atkinson, D. J. McCaughan, Avoiding consecutive patterns in permutations Adv. in Appl. Math., 45(3), 449-461, 2010.
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes
- Ira M. Gessel, Yan Zhuang, Counting permutations by alternating descents , arXiv:1408.1886 [math.CO], 2014. See displayed equation before Eq. (3), and set m=6. - _N. J. A. Sloane_, Aug 11 2014
- Mingjia Yang, Doron Zeilberger, Increasing Consecutive Patterns in Words, arXiv:1805.06077 [math.CO], 2018.
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t<4, add(b(u+j-1, o-j, t+1), j=1..o), 0)+ add(b(u-j, o+j-1, 0), j=1..u)) end: a:= n-> b(n, 0, 0): seq(a(n), n=0..30); # Alois P. Heinz, Oct 07 2013
-
Mathematica
Table[n!*SeriesCoefficient[1/(Sum[x^(6*k)/(6*k)!-x^(6*k+1)/(6*k+1)!,{k,0,n}]),{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Dec 11 2013 *) Rest[CoefficientList[Series[3/(E^(x/2) * Cos[x*Sqrt[3]/2+Pi/3] + Sqrt[3] * E^(-x/2) * Cos[x*Sqrt[3]/2+Pi/6] + E^(-x)),{x,0,20}],x] * Range[0,20]!] (* Vaclav Kotesovec, Aug 23 2014 *)
Formula
a(n)/n! ~ 1.005827831279392186... * (1/r)^n, where r = 1.0011988273240623031887... is the root of the equation Sum_{n>=0} (r^(6*n)/(6*n)! - r^(6*n+1)/(6*n+1)!) = 0. - Vaclav Kotesovec, Dec 11 2013
Equivalently, a(n)/n! ~ c * (1/r)^n, where r = 1.00119882732406230318870210972855430833421618931012450844128... is the root of the equation 2 + exp(r/2) * (3 + exp(r)) * cos(sqrt(3)*r/2) = 2 * sqrt(3) * exp(r) * cosh(r/2) * sin(sqrt(3)*r/2), c = sqrt(3) / (2 * r * cosh(r/2) * sin(sqrt(3)*r/2)) = 1.0058278312793921866941324506580803251270892126827302878865925027445... . - Vaclav Kotesovec, Aug 23 2014
E.g.f. (Aldred, Atkinson, McCaughan, 2010): 3/(exp(x/2) * cos(x*sqrt(3)/2+Pi/3) + sqrt(3) * exp(-x/2) * cos(x*sqrt(3)/2+Pi/6) + exp(-x)). - Vaclav Kotesovec, Aug 23 2014
Extensions
More terms from Ray Chandler, Dec 06 2011
Minor edits by Vaclav Kotesovec, Aug 29 2014
a(0)=1 prepended by Alois P. Heinz, Aug 08 2018
Comments