A177683 a(n) = 6*a(n-1)-8*a(n-2) for n > 4; a(0)=191, a(1)=1587, a(2)=14161, a(3)=123004, a(4)=508152.
191, 1587, 14161, 123004, 508152, 2064880, 8324064, 33425344, 133959552, 536354560, 2146450944, 8587869184, 34355607552, 137430691840, 549739290624, 2198990209024, 8796026929152, 35184239902720, 140737223983104
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6, -8).
Programs
-
Magma
[191, 1587, 14161] cat [2*4^(n+5)-2017*2^(n-1): n in [3..25]]; // Vincenzo Librandi, Sep 24 2013
-
Mathematica
Join[{191,1587,14161},Transpose[NestList[{Last[#],6Last[#]-8First[#]}&,{123004,508152},20]][[1]]] (* Harvey P. Dale, Mar 06 2011 *) CoefficientList[Series[(191 + 441 x + 6167 x^2 + 50734 x^3 - 116584 x^4)/((1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2013 *) LinearRecurrence[{6,-8},{191,1587,14161,123004,508152},20] (* Harvey P. Dale, Oct 16 2019 *)
-
PARI
{m=19; v=concat([191, 1587, 14161, 123004, 508152], vector(m-5)); for(n=6 ,m, v[n]=6*v[n-1]-8*v[n-2]); v}
Formula
a(n) = 2*4^(n+5)-2017*2^(n-1) for n > 2.
G.f.: (191+441*x+6167*x^2+50734*x^3-116584*x^4) / ((1-2*x)*(1-4*x)).
G.f. for the sequence starting at a(3): 4*x^3*(30751-57468*x) / ((1-2*x)*(1-4*x)).
Comments