cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177684 a(n) = 6*a(n-1)-8*a(n-2)-3 for n > 4; a(0)=633, a(1)=4809, a(2)=46041, a(3)=277767, a(4)=1079823.

Original entry on oeis.org

633, 4809, 46041, 277767, 1079823, 4256799, 16902207, 67358847, 268935423, 1074741759, 4296967167, 17183868927, 68727476223, 274893905919, 1099543625727, 4398110507007, 17592314036223, 70369000161279
Offset: 0

Views

Author

Klaus Brockhaus, May 12 2010

Keywords

Comments

Related to Reverse and Add trajectory of 537 in base 2: a(n) = A077076(4*n+2)/3, i.e., one third of third quadrisection of A077076.

Crossrefs

Cf. A077076 (Reverse and Add trajectory of 537 in base 2), A177682, A177683, A177685.

Programs

  • Magma
    [633, 4809, 46041] cat [4^(n+6)+1953*2^n-1: n in [3..25]]; // Vincenzo Librandi, Sep 24 2013
  • Mathematica
    Join[{633,4809,46041},RecurrenceTable[{a[3]==277767,a[4]==1079823,a[n] == 6a[n-1]-8a[n-2]-3},a,{n,20}]] (* or *) Join[{633,4809,46041}, LinearRecurrence[ {7,-14,8},{277767,1079823,4256799},18]] (* Harvey P. Dale, May 03 2012 *)
    CoefficientList[Series[3 (211 + 126 x + 7080 x^2 + 5914 x^3 - 86148 x^4 + 72816 x^5)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2013 *)
  • PARI
    {m=18; v=concat([633, 4809, 46041, 277767, 1079823], vector(m-5)); for(n=6 ,m, v[n]=6*v[n-1]-8*v[n-2]-3); v}
    

Formula

a(n) = 4^(n+6)+1953*2^n-1 for n > 2.
G.f.: 3*(211+126*x+7080*x^2+5914*x^3-86148*x^4+72816*x^5) / ((1-x)*(1-2*x)*(1-4*x)).
G.f. for the sequence starting at a(3): 3*x^3*(92589-288182*x+195592*x^2) / ((1-x)*(1-2*x)*(1-4*x)).
a(0)=633, a(1)=4809, a(2)=46041, a(3)=277767, a(4)=1079823, a(5)=4256799, a(n)=7*a(n-1)-14*a(n-2)+8*a(n-3). - Harvey P. Dale, May 03 2012