A177684 a(n) = 6*a(n-1)-8*a(n-2)-3 for n > 4; a(0)=633, a(1)=4809, a(2)=46041, a(3)=277767, a(4)=1079823.
633, 4809, 46041, 277767, 1079823, 4256799, 16902207, 67358847, 268935423, 1074741759, 4296967167, 17183868927, 68727476223, 274893905919, 1099543625727, 4398110507007, 17592314036223, 70369000161279
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Programs
-
Magma
[633, 4809, 46041] cat [4^(n+6)+1953*2^n-1: n in [3..25]]; // Vincenzo Librandi, Sep 24 2013
-
Mathematica
Join[{633,4809,46041},RecurrenceTable[{a[3]==277767,a[4]==1079823,a[n] == 6a[n-1]-8a[n-2]-3},a,{n,20}]] (* or *) Join[{633,4809,46041}, LinearRecurrence[ {7,-14,8},{277767,1079823,4256799},18]] (* Harvey P. Dale, May 03 2012 *) CoefficientList[Series[3 (211 + 126 x + 7080 x^2 + 5914 x^3 - 86148 x^4 + 72816 x^5)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2013 *)
-
PARI
{m=18; v=concat([633, 4809, 46041, 277767, 1079823], vector(m-5)); for(n=6 ,m, v[n]=6*v[n-1]-8*v[n-2]-3); v}
Formula
a(n) = 4^(n+6)+1953*2^n-1 for n > 2.
G.f.: 3*(211+126*x+7080*x^2+5914*x^3-86148*x^4+72816*x^5) / ((1-x)*(1-2*x)*(1-4*x)).
G.f. for the sequence starting at a(3): 3*x^3*(92589-288182*x+195592*x^2) / ((1-x)*(1-2*x)*(1-4*x)).
a(0)=633, a(1)=4809, a(2)=46041, a(3)=277767, a(4)=1079823, a(5)=4256799, a(n)=7*a(n-1)-14*a(n-2)+8*a(n-3). - Harvey P. Dale, May 03 2012
Comments