A177708 Pentagonal triangle.
1, 6, 12, 18, 57, 51, 40, 156, 209, 145, 75, 330, 531, 534, 330, 126, 600, 1074, 1278, 1122, 651, 196, 987, 1895, 2488, 2559, 2081, 1162, 288, 1512, 3051, 4275, 4824, 4563, 3537, 1926, 405, 2196, 4599, 6750, 8100, 8370, 7506, 5634, 3015
Offset: 1
Examples
The row for n = 4 is (1+5+12+22), (35+51+70), (92+117), 145 => 40, 156, 209, 145. 1; 6, 12; 18, 57, 51; 40, 156, 209, 145; 75, 330, 531, 534, 330; 126, 600, 1074, 1278, 1122, 651; 196, 987, 1895, 2488, 2559, 2081, 1162; 288, 1512, 3051, 4275, 4824, 4563, 3537, 1926; 405, 2196, 4599, 6750, 8100, 8370, 7506, 5634, 3015; 550, 3060, 6596, 10024, 12570, 13775, 13450, 11631, 8534, 4510;
Programs
-
Maple
A000326 :=proc(n) n*(3*n-1)/2 ; end proc: A177708 := proc(n,k) kc := 1 ; nsk := n ; ns := 1 ; while kc < k do ns := ns+nsk ; kc := kc+1 ; nsk := nsk-1 ; end do: add(A000326(i),i=ns..ns+nsk-1) ; end proc: # R. J. Mathar, Dec 14 2010
-
Mathematica
Table[Total/@TakeList[PolygonalNumber[5,Range[60]],Range[n,1,-1]],{n,10}]//Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Feb 17 2018 *)
Comments