cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177718 a(n) = |(number of 1's in binary representation of prime(n)) - (number of 0's in binary representation of prime(n))|.

Original entry on oeis.org

0, 2, 1, 3, 2, 2, 1, 1, 3, 3, 5, 0, 0, 2, 4, 2, 4, 4, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 3, 1, 7, 2, 2, 0, 0, 2, 2, 0, 2, 2, 2, 2, 6, 2, 0, 2, 2, 6, 2, 2, 2, 6, 2, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 1, 3, 5, 3, 5, 7, 1, 1, 1, 1, 1, 1, 5, 1, 5, 5, 1, 1, 3, 5, 3, 7, 5, 5, 5, 7, 7, 4, 2, 0, 2, 0, 0, 0, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 12 2010, May 18 2010

Keywords

Examples

			a(1)=0 because 2 = 10_2 and abs(1-1) = 0;
a(2)=2 because 3 = 11_2 and abs(0-2) = 2;
a(3)=1 because 5 = 101_2 and abs(1-2) = 1.
		

Crossrefs

Programs

  • Maple
    A023416 := proc(n) a := 0 ; for d in convert(n,base,2) do if d = 0 then a := a+1 ; end if; end do; a ; end proc:
    A000120 := proc(n) a := 0 ; for d in convert(n,base,2) do if d = 1 then a := a+1 ; end if; end do; a ; end proc:
    A037861 := proc(n) A023416(n)-A000120(n) ; end proc:
    A177718 := proc(n) abs(A037861(ithprime(n))) ; end proc: seq(A177718(n),n=1..120) ; # R. J. Mathar, May 15 2010
    # second Maple program:
    a:= n-> abs(add(2*i-1, i=Bits[Split](ithprime(n)))):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jan 18 2022
  • Mathematica
    nzmnu[n_]:=Module[{z=DigitCount[n,2,0]},Abs[2z-IntegerLength[n,2]]]; nzmnu/@ Prime[Range[110]] (* Harvey P. Dale, Feb 15 2015 *)
  • Python
    from sympy import isprime
    print([abs(bin(n)[2:].count("1") - bin(n)[2:].count("0")) for n in range (0,1000) if isprime(n)]) # Karl-Heinz Hofmann, Jan 18 2022

Formula

a(n) = abs(A014499(n) - A035103(n)).
a(n) = abs(A037861(prime(n))). - R. J. Mathar, May 15 2010

Extensions

Corrected at three or more places by R. J. Mathar, May 15 2010