cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177735 a(0)=1, a(n)=A002445(n)/6 for n>=1.

Original entry on oeis.org

1, 1, 5, 7, 5, 11, 455, 1, 85, 133, 55, 23, 455, 1, 145, 2387, 85, 1, 319865, 1, 2255, 301, 115, 47, 7735, 11, 265, 133, 145, 59, 9464455, 1, 85, 10787, 5, 781, 23350145, 1, 5, 553, 38335, 83, 567385, 1, 10235, 45353, 235, 1, 750295, 1, 5555, 721, 265, 107
Offset: 0

Views

Author

Paul Curtz, May 12 2010

Keywords

Comments

For n>=1: denominators of the Bernoulli numbers (A002445) divided by 6.
All entries are odd.
a(n)= A002445(n) / A020793(n).
5 divides a(2*n) for n>=1.
These numbers also equal to the lengths of the repeating patterns for the excluded integer values of c/6, when both p^n + c and p^n - c are prime, for an infinite number of primes p>2, and a given integer n>0, arising from the union of one or more prime-based modulo cycles, determined by the divisors of n. See A005097 for details and connection to the von Staudt-Clausen Theorem below. - Richard R. Forberg, Jul 19 2016

Crossrefs

Programs

  • Maple
    A002445 := proc(n) bernoulli(2*n) ; denom(%) ; end proc:
    A177735 := proc(n) if n = 0 then 1; else A002445(n)/6 ; end if; end proc:
    seq(A177735(n),n=0..60) ; # R. J. Mathar, Aug 15 2010
  • Mathematica
    Join[{1},Denominator[BernoulliB[Range[2,120,2]]]/6] (* Harvey P. Dale, Oct 19 2012 *)
    result = {}; Do[prod = 1; Do[If[PrimeQ[2*Divisors[n][[i]] + 1], prod *= (2*Divisors[n][[i]] + 1)], {i, 2, Length[Divisors[n]]}];
    AppendTo[result, prod] , {n, 1, 100}]  ; result (* Richard R. Forberg, Jul 19 2016 *)
  • PARI
    a(n)=
    {
        my(bd=1);
        forprime (p=5, 2*n+1, if( (2*n)%(p-1)==0, bd*=p ) );
        bd;
    }
    /* Joerg Arndt, May 06 2012 */
    
  • PARI
    a(n)=if(n<2, return(1)); my(s=1); fordiv(n,d, if(isprime(2*d+1) && d>1, s *= 2*d+1)); s \\ Charles R Greathouse IV, Jul 20 2016
    
  • Sage
    def A177735(n):
        if n == 0: return 1
        M = map(lambda i: i+1, divisors(2*n))
        return mul(filter(lambda s: is_prime(s), M))//6
    print([A177735(n) for n in (0..53)]) # Peter Luschny, Feb 20 2016

Formula

a(n) = denominator(BernoulliB(2*n, 1/2))/(3*2^(2*n)). - Jean-François Alcover, Apr 16 2013
A simple direct calculation of the denominators, for n>=1, is based on the von Staudt-Clausen Theorem: Product{d|n}(2d+1), for d>1 and 2d+1 prime. See in the Mathematica section below. - Richard R. Forberg, Jul 19 2016