cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A177086 Semiprimes k that divide Fibonacci(k-1).

Original entry on oeis.org

1891, 4181, 8149, 13201, 15251, 17711, 40501, 51841, 64079, 64681, 67861, 68251, 78409, 88601, 88831, 90061, 96049, 97921, 115231, 118441, 145351, 146611, 153781, 191351, 197209, 218791, 219781, 254321, 272611, 302101, 303101
Offset: 1

Views

Author

Jonathan Vos Post, Dec 09 2010

Keywords

Comments

This is the semiprime (A001358) analog of A045468. Now A045468 has a very simple characterization: it consists of the primes ending in 1 or 9. Can one say anything about the present sequence?

Examples

			46368/23 = 2016 = 2^5 * 3^2 * 7 so (24-1) | Fibonacci(24) but 24 is not semiprime, so is not in the sequence.
a(1) = 1891 = 31 * 61 is not in the sequence because 1891 divides Fibonacci(1891-1) = Fibonacci(1890).
a(21) = 146611 = 271 * 541 because 146611 | Fibonacci(146610).
		

Crossrefs

Cf. A000040, A000045, A001358, A069106, A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).
Cf. A177745 (semiprimes k that divide Fibonacci(k+1)).

Programs

  • Mathematica
    Select[Range[310000],PrimeOmega[#]==2 && Divisible[Fibonacci[#-1],#]&] (* Harvey P. Dale, May 02 2016 *)

Formula

{k: k is in A001358 and k|A000045(k-1)} = A069106 INTERSECTION A001358.
Showing 1-1 of 1 results.