cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A177745 Semiprimes k that divide Fibonacci(k+1).

Original entry on oeis.org

323, 377, 3827, 5777, 10877, 11663, 18407, 19043, 23407, 25877, 27323, 34943, 39203, 51983, 53663, 60377, 75077, 86063, 94667, 100127, 113573, 121103, 121393, 161027, 162133, 182513, 195227, 200147, 231703, 240239, 250277, 294527, 306287, 345913, 381923, 429263, 430127, 454607, 500207, 507527, 548627, 569087, 600767, 635627, 636707, 685583, 697883, 736163, 753377, 775207, 828827, 851927, 948433, 983903
Offset: 1

Views

Author

Jonathan Vos Post, Dec 12 2010

Keywords

Comments

Data from T. D. Noe.

Examples

			a(1) = 323 = 17 * 19 because it is semiprime (product of two prime A000040), and 323 divides F(324) = 23041483585524168262220906489642018075101617466780496790573690289968, with dividend 2^4 * 3^5 * 53 * 107 * 109 * 2269 * 3079 * 4373 * 5779 * 19441 * 11128427 * 62650261 * 1828620361 * 6782976947987.
		

Crossrefs

Cf. A177086, A000045, A001358, A069106, A045468, A003631, A064739, A081264 (Fibonacci pseudoprimes).

Programs

  • Mathematica
    With[{semis=Select[Range[1000000],PrimeOmega[#]==2&]},Select[semis, Divisible[Fibonacci[#+1],#]&]] (* Harvey P. Dale, Aug 20 2012 *)

Formula

{k: k is in A001358 and k|A000045(k+1)}.
Showing 1-1 of 1 results.