cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177788 a(n) = binomial(n^2, n+1)/(n-1).

Original entry on oeis.org

4, 63, 1456, 44275, 1669536, 75163011, 3934369216, 234799050915, 15736644960400, 1170354134607658, 95648578915114512, 8520904136405458044, 821828481957792579648, 85317719822978885714475, 9485883860726883646713600, 1124586875214241546178986915
Offset: 2

Views

Author

Michel Lagneau, May 13 2010

Keywords

Comments

The entries are integer for n >= 2 because binomial(n^2,n+1)/(n-1) = n*binomial(n^2-2,n-1), which is a product of two integers.

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n+1)/(n-1): n in [2..30]]; // G. C. Greubel, Apr 28 2024
    
  • Maple
    n0:=30: T:=array(1..n0): T:=array(1..n0-1): for n from 2 to n0 do: T[n-1]:= (binomial(n^2,n+1))/(n-1): od: print(T):
  • Mathematica
    Table[Binomial[n^2,n+1]/(n-1), {n,2,40}] (* G. C. Greubel, Apr 28 2024 *)
  • PARI
    a(n) = binomial(n^2, n+1)/(n-1) \\ Charles R Greathouse IV, May 01 2024
  • SageMath
    [binomial(n^2,n+1)/(n-1) for n in range(2,31)] # G. C. Greubel, Apr 28 2024
    

Formula

a(n) = binomial(n^2,n+1)/(n-1).
a(n) = n * A177234(n).
a(n) = n^2 * A177784(n).

Extensions

Removed redundant second Maple version - R. J. Mathar, May 14 2010