A175623 Triangle read by rows: T(n,k) = prime(k)^(n-1) mod n, 1<=k<=n.
0, 0, 1, 1, 0, 1, 0, 3, 1, 3, 1, 1, 0, 1, 1, 2, 3, 5, 1, 5, 1, 1, 1, 1, 0, 1, 1, 1, 0, 3, 5, 7, 3, 5, 1, 3, 4, 0, 7, 4, 4, 7, 1, 1, 7, 2, 3, 5, 7, 1, 3, 7, 9, 3, 9, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 8, 3, 5, 7, 11, 1, 5, 7, 11, 5, 7, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: 0; 0, 1; 1, 0, 1; 0, 3, 1, 3; 1, 1, 0, 1, 1;
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[Modexp(NthPrime(k), n-1, n): k in [1..n], n in [1..15]]; // G. C. Greubel, Apr 12 2024
-
Mathematica
T[n_, k_] := Mod[ Prime[k]^(n - 1), n]; Table[ T[n, k], {n, 13}, {k, n}] // Flatten Flatten[Table[PowerMod[Prime[k],n-1,n],{n,20},{k,n}]] (* Harvey P. Dale, Oct 13 2015 *)
-
SageMath
flatten([[pow(nth_prime(k),n-1,n) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Apr 12 2024