A177880 Numbers k such that not all exponents in the prime power factorization of k are in A005836.
4, 9, 12, 18, 20, 25, 28, 32, 36, 44, 45, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 84, 90, 92, 96, 98, 99, 100, 108, 116, 117, 121, 124, 126, 128, 132, 140, 144, 147, 148, 150, 153, 156, 160, 164, 169, 171, 172, 175, 180, 188, 192, 196, 198, 200, 204, 207
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A005836.
Programs
-
Mathematica
Select[Range[200], AnyTrue[FactorInteger[#][[;; , 2]], DigitCount[#1, 3, 2] > 0 &] &] (* Amiram Eldar, Aug 31 2020 *)
-
Sage
is_A005836 = lambda n: 2 not in n.digits(base=3) is_A177880 = lambda n: not all(is_A005836(Integer(m)) for p,m in factor(n)) # D. S. McNeil, Dec 16 2010
Formula
Let A(x) be counting function of terms not exceeding x. Then for x tends to infinity, A(x)=C*x+o(x^(0.5+eps), where C=1-Prod{i=p^(3^k)with prime p and k>=0}(1-1/(i^2+i+1)).
Extensions
Extended by D. S. McNeil, Dec 16 2010
Comments