cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177883 Period 6: repeat [4, 5, 7, 2, 1, 8].

Original entry on oeis.org

4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5
Offset: 0

Views

Author

Paul Curtz, Dec 14 2010

Keywords

Comments

Represents also the decimal expansion of 16934/37037 and the continued fractions of 0.23839... = (sqrt(496555)-667)/158 or of 4.194699... = (667+sqrt(496555))/327. - R. J. Mathar, Dec 20 2010

Crossrefs

Cf. A173598, A141425, A153130 (permutations).

Programs

Formula

a(n) = A166304(n) mod 9 = A022998(3n+2) mod 9.
a(2n) + a(2n+1) = 9.
G.f.: (4+5*x+7*x^2+2*x^3+x^4+8*x^5) / ( (1-x)*(1+x)*(1+x+x^2)*(x^2-x+1) ). - R. J. Mathar, Dec 20 2010
From Wesley Ivan Hurt, Jun 18 2016: (Start)
a(n) = a(n-6) for n>5.
a(n) = (9 -cos(n*Pi) + 3*cos(n*Pi/3) - 3*cos(2*n*Pi/3) + sqrt(3)*sin(n*Pi/3) - 3*sqrt(3)*sin(2*n*Pi/3))/2. (End)