A177883 Period 6: repeat [4, 5, 7, 2, 1, 8].
4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5, 7, 2, 1, 8, 4, 5
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
Programs
-
Magma
&cat[[4, 5, 7, 2, 1, 8]: n in [0..20]]; // Wesley Ivan Hurt, Jun 18 2016
-
Maple
A177883:=n->[4, 5, 7, 2, 1, 8][(n mod 6)+1]: seq(A177883(n), n=0..100); # Wesley Ivan Hurt, Jun 18 2016
-
Mathematica
PadRight[{}, 120, {4,5,7,2,1,8}] (* Harvey P. Dale, Feb 11 2016 *)
-
PARI
a(n)=[4, 5, 7, 2, 1, 8][n%6+1] \\ Charles R Greathouse IV, Jul 17 2016
Formula
a(2n) + a(2n+1) = 9.
G.f.: (4+5*x+7*x^2+2*x^3+x^4+8*x^5) / ( (1-x)*(1+x)*(1+x+x^2)*(x^2-x+1) ). - R. J. Mathar, Dec 20 2010
From Wesley Ivan Hurt, Jun 18 2016: (Start)
a(n) = a(n-6) for n>5.
a(n) = (9 -cos(n*Pi) + 3*cos(n*Pi/3) - 3*cos(2*n*Pi/3) + sqrt(3)*sin(n*Pi/3) - 3*sqrt(3)*sin(2*n*Pi/3))/2. (End)
Comments