A177904 a(1)=a(2)=a(3)=1; thereafter a(n) = gpf(a(n-1)+a(n-2)+a(n-3)), where gpf = "greatest prime factor".
1, 1, 1, 3, 5, 3, 11, 19, 11, 41, 71, 41, 17, 43, 101, 23, 167, 97, 41, 61, 199, 43, 101, 7, 151, 37, 13, 67, 13, 31, 37, 3, 71, 37, 37, 29, 103, 13, 29, 29, 71, 43, 13, 127, 61, 67, 17, 29, 113, 53, 13, 179, 7, 199, 11, 31, 241, 283, 37, 17, 337, 23, 29, 389, 7, 17, 59, 83, 53, 13, 149, 43, 41, 233, 317, 197, 83, 199, 479, 761, 1439, 47, 107
Offset: 1
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..1000
- G. Back and M. Caragiu, The greatest prime factor and recurrent sequences, Fib. Q., 48 (2010), 358-362.
Programs
-
Haskell
a177904 n = a177904_list !! (n-1) a177904_list = 1 : 1 : 1 : (map a006530 $ zipWith (+) a177904_list (tail $ zipWith (+) a177904_list $ tail a177904_list)) -- Reinhard Zumkeller, Jul 24 2012
-
Maple
with(numtheory, divisors); A006530 := proc(n) local i, t1, t2, t3, t4, t5; t1 := divisors(n); t2 := convert(t1, list); t3 := sort(t2); t4 := nops(t3); t5 := 1; for i from 1 to t4 do if isprime(t3[t4+1-i]) then RETURN(t3[t4+1-i]); fi; od; 1; end; M:=1000; t1:=[1,1,1]; for n from 4 to M do t1:=[op(t1),A006530(t1[n-1]+t1[n-2]+t1[n-3])]; od: t1;
-
Mathematica
nxt[{a_,b_,c_}]:={b,c,FactorInteger[a+b+c][[-1,1]]}; NestList[nxt,{1,1,1},90][[All,1]] (* Harvey P. Dale, Jul 17 2017 *)
Comments