cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177904 a(1)=a(2)=a(3)=1; thereafter a(n) = gpf(a(n-1)+a(n-2)+a(n-3)), where gpf = "greatest prime factor".

Original entry on oeis.org

1, 1, 1, 3, 5, 3, 11, 19, 11, 41, 71, 41, 17, 43, 101, 23, 167, 97, 41, 61, 199, 43, 101, 7, 151, 37, 13, 67, 13, 31, 37, 3, 71, 37, 37, 29, 103, 13, 29, 29, 71, 43, 13, 127, 61, 67, 17, 29, 113, 53, 13, 179, 7, 199, 11, 31, 241, 283, 37, 17, 337, 23, 29, 389, 7, 17, 59, 83, 53, 13, 149, 43, 41, 233, 317, 197, 83, 199, 479, 761, 1439, 47, 107
Offset: 1

Views

Author

N. J. A. Sloane, Dec 16 2010

Keywords

Comments

After 86 steps, enters a cycle of length 212 (see A177923).

Crossrefs

Programs

  • Haskell
    a177904 n = a177904_list !! (n-1)
    a177904_list = 1 : 1 : 1 : (map a006530 $ zipWith (+)
       a177904_list (tail $ zipWith (+) a177904_list $ tail a177904_list))
    -- Reinhard Zumkeller, Jul 24 2012
  • Maple
    with(numtheory, divisors); A006530 := proc(n) local i, t1, t2, t3, t4, t5; t1 := divisors(n); t2 := convert(t1, list); t3 := sort(t2); t4 := nops(t3); t5 := 1; for i from 1 to t4 do if isprime(t3[t4+1-i]) then RETURN(t3[t4+1-i]); fi; od; 1; end;
    M:=1000;
    t1:=[1,1,1];
    for n from 4 to M do
    t1:=[op(t1),A006530(t1[n-1]+t1[n-2]+t1[n-3])]; od:
    t1;
  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,FactorInteger[a+b+c][[-1,1]]}; NestList[nxt,{1,1,1},90][[All,1]] (* Harvey P. Dale, Jul 17 2017 *)