cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A178179 Like A177904, but start with a(1)=0, a(2)=a(3)=1.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 3, 5, 13, 7, 5, 5, 17, 3, 5, 5, 13, 23, 41, 11, 5, 19, 7, 31, 19, 19, 23, 61, 103, 17, 181, 43, 241, 31, 7, 31, 23, 61, 23, 107, 191, 107, 5, 101, 71, 59, 11, 47, 13, 71, 131, 43, 7, 181, 11, 199, 23, 233, 13, 269, 103, 11, 383, 71, 31, 97, 199, 109, 5, 313, 61, 379, 251, 691, 1321, 73, 139, 73, 19, 11, 103, 19, 19, 47, 17, 83, 7, 107, 197, 311, 41, 61, 59, 23, 13, 19, 11, 43, 73, 127, 3, 29, 53, 17, 11, 3, 31
Offset: 1

Views

Author

N. J. A. Sloane, Dec 19 2010

Keywords

Comments

After 7 steps, enters a cycle of length 100. The complete cycle, ending at 31, is shown.

Crossrefs

Cf. A177904.

Programs

  • Mathematica
    a[1] = 0; a[2] = a[3] = 1; a[n_] := a[n] = FactorInteger[a[n - 1] + a[n - 2] + a[n - 3]][[-1, 1]]; Array[a, 107] (* Robert G. Wilson v, Nov 17 2014 *)
    nxt[{a_,b_,c_}]:={b,c,FactorInteger[a+b+c][[-1,1]]}; NestList[nxt,{0,1,1},110][[All,1]] (* Harvey P. Dale, Jul 17 2017 *)

A175723 a(1)=a(2)=1; thereafter a(n) = gpf(a(n-1)+a(n-2)), where gpf = "greatest prime factor".

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5, 2, 7, 3, 5
Offset: 1

Views

Author

N. J. A. Sloane, Dec 16 2010

Keywords

Comments

Rapidly enters a loop with period 3,5,2,7.
More generally, if a(1) and a(2) are distinct positive numbers with a(1)+a(2) >= 2, the sequence eventually enters the cycle {7,3,5,2} [Back and Caragiu].

Crossrefs

Similar or related sequences: A177904, A177923, A178094, A178095, A178174, A178179, A180101, A180107, A221183.

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,FactorInteger[a+b][[-1,1]]}; Transpose[NestList[nxt,{1,1},120]][[1]] (* or *) PadRight[{1,1,2},130,{5,2,7,3}] (* Harvey P. Dale, Feb 24 2015 *)

A177923 a(1)=19, a(2)=13, a(3)=37; thereafter a(n) = gpf(a(n-1)+a(n-2)+a(n-3)), where gpf = "greatest prime factor".

Original entry on oeis.org

19, 13, 37, 23, 73, 19, 23, 23, 13, 59, 19, 13, 13, 5, 31, 7, 43, 3, 53, 11, 67, 131, 19, 31, 181, 11, 223, 83, 317, 89, 163, 569, 821, 1553, 109, 191, 109, 409, 709, 409, 509, 1627, 509, 23, 127, 659, 809, 29, 499, 191, 719, 1409, 773, 967, 67, 139, 23, 229, 23, 11, 263, 11, 19, 293, 19, 331, 643, 331, 29, 59, 419, 13, 491, 71, 23, 13, 107, 13, 19, 139, 19, 59, 31, 109, 199, 113, 421, 733, 181, 89, 59, 47, 13, 17, 11, 41, 23, 5, 23, 17, 5, 5, 3, 13, 7, 23, 43, 73, 139, 17, 229, 11, 257, 71, 113, 7, 191, 311, 509, 337
Offset: 1

Views

Author

N. J. A. Sloane, Dec 18 2010

Keywords

Comments

This is the periodic part of A177904 - it is periodic with period 212.
A smaller start is a(1)=3, a(2)=13, a(3)=7, but that would not produce the terms in the order of their first appearance in A177904.
There are several open questions concerning this class of sequences - see the Back-Caragiu reference in A177904.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,FactorInteger[a+b+c][[-1,1]]}; NestList[nxt,{19,13,37},120][[All,1]] (* Harvey P. Dale, Dec 11 2018 *)

A178095 a(1)=a(2)=a(3)=1; thereafter a(n) = lpf(a(n-1)+a(n-2)+a(n-3)), where lpf = "least prime factor".

Original entry on oeis.org

1, 1, 1, 3, 5, 3, 11, 19, 3, 3, 5, 11, 19, 5, 5, 29, 3, 37, 3, 43, 83, 3, 3, 89, 5, 97, 191, 293, 7, 491, 7, 5, 503, 5, 3, 7, 3, 13, 23, 3, 3, 29, 5, 37, 71, 113, 13, 197, 17, 227, 3, 13, 3, 19, 5, 3, 3, 11, 17, 31, 59, 107, 197, 3, 307, 3, 313, 7, 17, 337, 19, 373, 3, 5, 3, 11, 19, 3, 3, 5, 11, 19, 5, 5, 29, 3, 37, 3, 43, 83, 3, 3, 89, 5, 97, 191, 293, 7, 491, 7
Offset: 1

Views

Author

N. J. A. Sloane, Dec 16 2010

Keywords

Comments

Has period 69, starting with the fourth term: 3, 5, 3, 11, 19, 3, 3, 5, 11, ...

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,FactorInteger[a+b+c][[1,1]]}; Transpose[ NestList[ nxt,{1,1,1},100]][[1]] (* Harvey P. Dale, Aug 19 2014 *)

A214320 a(0)=a(1)=a(2)=1; thereafter a(n) = gpf(a(n-1)+a(n-3)), where gpf = "greatest prime factor".

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 2, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3, 5, 2, 5, 5, 7, 3, 2, 3, 3
Offset: 0

Views

Author

N. J. A. Sloane, Jul 22 2012

Keywords

Comments

Suggested by A214551 and A177904.

Crossrefs

Programs

  • Haskell
    a214320 n = a214320_list !! n
    a214320_list = 1 : 1 : 1 : (map a006530 $
       zipWith (+) a214320_list (drop 2 $ a214320_list))
    -- Reinhard Zumkeller, Jul 24 2012
  • Maple
    with(numtheory, divisors); A006530 := proc(n) local i, t1, t2, t3, t4, t5; t1 := divisors(n); t2 := convert(t1, list); t3 := sort(t2); t4 := nops(t3); t5 := 1; for i from 1 to t4 do if isprime(t3[t4+1-i]) then RETURN(t3[t4+1-i]); fi; od; 1; end;
    f:=proc(n) option remember; if n <= 2 then 1 else A006530(f(n-1)+f(n-3)); fi; end;
    [seq(f(n),n=0..120)];
  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,FactorInteger[c+a][[-1,1]]}; NestList[nxt,{1,1,1},120][[All,1]] (* or *) PadRight[{1,1,1,2,3,2,2},130,{3,2,3,3,5,2,5,5,7}] (* Harvey P. Dale, Jul 08 2017 *)

Formula

After 7 terms, cycles with period 9.

A178174 a(1)=a(2)=a(3)=a(4)=1; thereafter a(n) = gpf(a(n-1)+a(n-2)+a(n-3)+a(n-4)), where gpf is the greatest prime factor.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 3, 11, 7, 13, 17, 3, 5, 19, 11, 19, 3, 13, 23, 29, 17, 41, 11, 7, 19, 13, 5, 11, 3, 2, 7, 23, 7, 13, 5, 3, 7, 7, 11, 7, 2, 3, 23, 7, 7, 5, 7, 13, 2, 3, 5, 23, 11, 7, 23, 2, 43, 5, 73, 41, 3, 61, 89, 97, 5, 7, 11, 5, 7, 5, 7, 3, 11, 13, 17, 11, 13, 3, 11, 19, 23, 7, 5, 3, 19, 17, 11, 5, 13, 23, 13, 3, 13, 13, 7, 3, 3, 13, 13, 2, 31, 59, 7, 11, 3, 5, 13, 2, 23, 43, 3, 71, 7, 31
Offset: 1

Views

Author

N. J. A. Sloane, Dec 18 2010

Keywords

Comments

After 133 steps, enters a cycle of length 14.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,FactorInteger[a+b+c+d][[-1,1]]}; Transpose[ NestList[ nxt,{1,1,1,1},120]][[1]] (* Harvey P. Dale, Sep 24 2013 *)

A282098 a(n) = A006530(a(n-1)) + A006530(a(n-2)) + A006530(a(n-3)) with a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 11, 19, 33, 41, 71, 123, 153, 129, 101, 161, 167, 291, 287, 305, 199, 301, 303, 343, 151, 259, 195, 201, 117, 93, 111, 81, 71, 111, 111, 145, 103, 169, 145, 145, 71, 129, 143, 127, 183, 201, 255, 145, 113, 159, 195, 179, 245, 199, 385, 217, 241, 283, 555, 561, 337, 391, 377, 389, 441
Offset: 0

Views

Author

Altug Alkan, Feb 06 2017

Keywords

Comments

See also graph of this sequence.

Examples

			a(6) = 11 because A006530(3) + A006530(5) + A006530(9) = 3 + 5 + 3 = 11.
		

Crossrefs

Programs

  • Maple
    for i from 0 to 2 do A[i]:= 1: G[i]:= 1 od:
    for i from 3 to 303 do
      A[i]:= G[i-1]+G[i-2]+G[i-3];
      G[i]:= max(numtheory:-factorset(A[i]));
    od:
    seq(A[i],i=1..303); # Robert Israel, Feb 06 2017
  • Mathematica
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = FactorInteger[a[n - 1]][[-1, 1]] + FactorInteger[a[n - 2]][[-1, 1]] + FactorInteger[a[n - 3]][[-1, 1]]; Table[a@ n, {n, 0, 64}] (* Michael De Vlieger, Feb 07 2017 *)

Formula

a(n) = a(n+212) for n >= 89. - Robert Israel, Feb 06 2017

A287051 a(0) = 0, a(1) = 1; a(2*n) = gpf(a(n)), a(2*n+1) = a(n) + a(n+1), where gpf(a(n)) is the greatest prime dividing a(n) for a(n) >= 2 and 1 if a(n) = 1 (A006530).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 2, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 2, 5, 1, 6, 5, 7, 2, 9, 7, 10, 3, 11, 2, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 2, 11, 3, 10, 7, 9, 2, 7, 5, 6, 1, 7, 3, 11, 5, 12, 7, 9, 2, 11, 3, 16, 7, 17, 5, 13, 3, 14, 11, 13, 2, 15, 13, 18, 5, 17, 3, 19, 7, 16, 3, 11, 2, 11, 3, 16, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2017

Keywords

Comments

A variation on Stern's diatomic sequence.

Examples

			a(0) = 0;
a(1) = 1;
a(2) = a(2*1) = gpf(a(1)) = 1;
a(3) = a(2*1+1) = a(1) + a(2) = 2;
a(4) = a(2*2) = gpf(a(2)) = 1;
a(5) = a(2*2+1) = a(2) + a(3) = 3;
a(6) = a(2*3) = gpf(a(3)) = 2, etc.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], FactorInteger[a[n/2]][[-1, 1]], a[(n - 1)/2] + a[(n + 1)/2]]; Table[a[n], {n, 0, 100}]

A282184 a(n) = A034699(a(n-1) + a(n-2) + a(n-3)) with a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 31, 19, 67, 13, 11, 13, 37, 61, 37, 27, 125, 27, 179, 331, 179, 53, 563, 53, 223, 839, 223, 257, 1319, 257, 47, 541, 169, 757, 163, 121, 347, 631, 157, 227, 29, 59, 9, 97, 11, 13, 121, 29, 163, 313, 101, 577, 991, 1669, 83, 211, 151, 89, 41, 281, 137, 27, 89, 23, 139, 251, 59, 449, 23, 59, 59
Offset: 0

Views

Author

Altug Alkan, Feb 08 2017

Keywords

Comments

Sequence is cyclical, beginning with terms a(255)-a(257) = {19,13,43} with a period of 306 terms. - Michael De Vlieger, Feb 08 2017

Examples

			a(5) = 9 because A034699(1 + 3 + 5) = A034699(9) = 9.
		

Crossrefs

Programs

  • Mathematica
    a = {1, 1, 1}; Do[AppendTo[a, If[# == 1, 1, Max[Power @@@ FactorInteger@ #]] &@ Total@ {a[[i - 3]], a[[i - 2]], a[[i - 1]]}], {i, 4, 72}]; a (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    lappf(n) = my(f=factor(n)); vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]));
    lista(nn) = {x = 1; y = 1; z = 1; print1(x, ", ", y, ", ", z, ", "); for (n=4, nn, t = lappf(x+y+z); print1(t, ", "); x = y; y = z; z = t;);} \\ Michel Marcus, Feb 10 2017
Showing 1-9 of 9 results.