cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177964 Indices m for which A177961(m) = 4.

Original entry on oeis.org

2, 13, 17, 28, 32, 43, 47, 58, 62, 73, 77, 88, 92, 103, 107, 118, 122, 133, 137, 148, 152, 163, 167, 178, 182, 193, 197, 208, 212, 223, 227, 238, 242, 253, 257, 268, 272, 283, 287, 298, 302, 313, 317, 328, 332, 343, 347, 358, 362, 373, 377, 388, 392, 403, 407, 418, 422
Offset: 1

Views

Author

Vladimir Shevelev, May 16 2010

Keywords

Comments

Note that 4 is the smallest value of A177961.

Crossrefs

Cf. A177961.

Programs

  • Magma
    [15*(n/2-1/4)+7*(-1)^n/4: n in [1..60]]; // Vincenzo Librandi, Aug 01 2015
  • Maple
    seq(seq(15*i+j, j=[2,13]),i=0..100); # Robert Israel, Jul 31 2015
  • Mathematica
    Table[15 (n/2 - 1/4) + 7 (-1)^n/4, {n, 60}] (* Vincenzo Librandi, Aug 01 2015 *)
    LinearRecurrence[{1,1,-1},{2,13,17},80] (* Harvey P. Dale, Nov 01 2023 *)

Formula

a(n+2) = a(n)+15.
a(n) == (-1)^n (mod 3).
a(n) = 15*(n/2-1/4)+7*(-1)^n/4. - R. J. Mathar, Oct 25 2010
k such that k == 2 or -2 (mod 15). - Robert Israel, Jul 31 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/10)*Pi/15 = sqrt(1+2/sqrt(5))*Pi/15. - Amiram Eldar, Feb 28 2023
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cos(3*Pi/10)*sec(11*Pi/30).
Product_{n>=1} (1 + (-1)^n/a(n)) = sec(Pi/15)/2. (End)

Extensions

More terms from R. J. Mathar, Oct 25 2010