cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A177961 a(1)=2. Otherwise the average of the smallest prime divisors of 2n-1 and 2n+1.

Original entry on oeis.org

2, 4, 6, 5, 7, 12, 8, 10, 18, 11, 13, 14, 4, 16, 30, 17, 4, 21, 20, 22, 42, 23, 25, 27, 5, 28, 29, 4, 31, 60, 32, 4, 36, 35, 37, 72, 38, 5, 43, 41, 43, 44, 4, 46, 48, 5, 4, 51, 50, 52, 102, 53, 55, 108, 56, 58, 59, 4, 5, 9, 7, 4, 66, 65, 67, 69, 5, 70, 138, 71, 7, 8, 4, 76, 150, 77, 4, 81
Offset: 1

Views

Author

Vladimir Shevelev, May 16 2010, May 22 2010

Keywords

Comments

As n tends to infinity, we have 1) lim inf (a(n)/n)=0; 2) if there exist infinitely many twin primes, then lim sup (a(n)/n)=2, otherwise, lim sup (a(n)/n)=1.

Crossrefs

Programs

  • Magma
    [2] cat [1/2*(Min(PrimeFactors(2*n-1))+ Min(PrimeFactors(2*n+1))):n in [2..80]]; // Vincenzo Librandi, Feb 07 2016
  • Maple
    N:= 100: # to get a(1) to a(N)
    S:= [1,seq(min(numtheory:-factorset(2*i-1)),i=2..N+1)]:
    (S[2..-1]+S[1..-2])/2; # Robert Israel, Jul 31 2015
  • Mathematica
    Table[If[n == 1, 2, Mean[{FactorInteger[2 n - 1][[1, 1]], FactorInteger[2 n + 1][[1, 1]]}]], {n, 78}] (* Michael De Vlieger, Aug 02 2015 *)
  • PARI
    a(n) = if (n==1, 2, (vecmin(factor(2*n-1)[,1]) + vecmin(factor(2*n+1)[,1]))/2); \\ Michel Marcus, Feb 07 2016
    

Formula

a(n) = (A090368(n)+A090368(n+1))/2. [R. J. Mathar, May 31 2010]

Extensions

More terms from R. J. Mathar, May 31 2010

A177966 Indices m for which A177961(m) = 2 + m.

Original entry on oeis.org

2, 5, 8, 11, 12, 14, 20, 23, 26, 27, 29, 35, 41, 42, 44, 50, 53, 56, 57, 65, 68, 74, 83, 86, 87, 89, 95, 98, 113, 116, 117, 119, 125, 128, 131, 132, 134, 140, 146, 147, 155, 158, 173, 176, 177, 179, 191, 192, 194, 200, 209, 215, 221, 222, 224, 230, 233, 239, 245, 251, 252, 254
Offset: 1

Views

Author

Vladimir Shevelev, May 16 2010

Keywords

Comments

All m for which 2*m+1 is in A003627 are in the sequence:
This concerns m=2, 5, 8, 11, 14, 20, 23, 26, 29, 35,...
Union of (A003627-1)/2 and (A132235+1)/2. - Robert Israel, Jul 31 2015

Crossrefs

Programs

  • Maple
    A090368 := proc(n) A020639(2*n-1) ; end proc:
    A177961 := proc(n) (A090368(n)+A090368(n+1)) /2 ; end proc:
    isA177966 := proc(n) A177961(m) = m+2 ; end proc:
    for m from 1 to 800 do if isA177966(m) then printf("%d,",m) ; end if; end do:
    # R. J. Mathar, Oct 25 2010
    N:= 1000: # to get all terms <= N
    A1:= map(t -> (t-1)/2, select(isprime, {seq(6*i-1, i=1..(N+1)/3)})):
    A2:= map(t -> (t+1)/2, select(isprime, {seq(23+30*i,i=0..(N-12)/15)})):
    sort(convert(A1 union A2,list));
    # Robert Israel, Jul 31 2015
  • Mathematica
    M = 1000; (* to get all terms <= M *)
    A1 = (Select[Table[6 i - 1, {i, 1, (M + 1)/3}], PrimeQ] - 1)/2;
    A2 = (Select[Table[23 + 30 i, {i, 0, (M - 12)/15}], PrimeQ] + 1)/2;
    Union[A1, A2] (* Jean-François Alcover, Jul 17 2020, after Robert Israel *)

Extensions

Corrected (11, 23, 27, etc. inserted) and extended by R. J. Mathar, Oct 25 2010

A123365 Values of k such that A046530(k) = (k+2)/3, where A046530(k) is the number of distinct residues of cubes mod k.

Original entry on oeis.org

1, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619
Offset: 1

Views

Author

John W. Layman, Oct 12 2006

Keywords

Comments

Conjecture: With the exception of the first term a(1)=1, this is exactly the sequence of primes of the form 6k+1 (A002476). This has been verified up to a(n)=2000.

Crossrefs

Programs

  • Maple
    n := 1 :
    a := 1 :
    while n <= 10000 do
        printf("%d %d\n",n,a) ;
        a := a+1 ;
        while A046530(a) <> (a+2)/3 do
            a := a+1 ;
        end do:
        n := n+1 ;
    end do: # creates b-file, R. J. Mathar, Sep 21 2017
Showing 1-3 of 3 results.