A178032 Numbers n such that n, n+1, n+2 are all of the form p*q^2 for distinct primes p,q.
603, 2523, 4203, 4923, 7442, 10467, 18027, 20402, 54475, 58923, 79011, 97675, 104211, 118323, 120787, 122571, 124891, 132723, 134307, 148075, 200491, 229707, 243602, 246571, 249307, 258507, 303651, 324331, 331387, 370827, 385675
Offset: 1
Keywords
Examples
603=3*3*67, 604=2*2*151, 605=5*11*11 2523=3*29*29, 2524=2*2*631, 2525=5*5*101
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 500 terms from Harvey P. Dale)
- Index to sequences related to prime signature
Programs
-
Mathematica
SequencePosition[Table[If[Sort[FactorInteger[n][[All,2]]]=={1,2},1,0],{n,400000}],{1,1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 30 2019 *)
-
Sage
is_A178032 = lambda n: all(sorted(m for p,m in factor(k)) == [1, 2] for k in (n, n+1, n+2)) # D. S. McNeil, Dec 17 2010
Extensions
Corrected and extended by D. S. McNeil, Dec 16 2010