A178078
Sequence with a (1,-1) Somos-4 Hankel transform.
Original entry on oeis.org
1, 0, 1, 1, 4, 12, 42, 147, 527, 1914, 7039, 26159, 98110, 370919, 1412211, 5410273, 20841886, 80685792, 313747624, 1224895416, 4799435482, 18867423751, 74394859297, 294152650731, 1166021396660, 4632969618849, 18448290723435
Offset: 0
-
Table[Sum[(Binomial[n-k, k]/(n-2*k+1))*Sum[Binomial[k, j]*Binomial[n-k-j-1, n-2*k-j]*3^(n-2*k-j)*(-2)^j*1^(k-j), {j, 0, k}], {k, 0, Floor[n/2]}] + ((1 + (-1)^n)*(2/3)^(n/2))/2, {n, 0, 50}] (* G. C. Greubel, Sep 18 2018 *)
-
a(n) = sum(k=0,floor(n/2), sum(j=0,k, (binomial(n-k,k)/(n-2*k+1)) *binomial(k,j)*binomial(n-k-j-1,n-2*k-j)*3^(n-2*k-j)*(-2)^j));
for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Sep 18 2018
A178578
Diagonal sums of second binomial transform of the Narayana triangle A001263.
Original entry on oeis.org
1, 3, 10, 34, 118, 417, 1497, 5448, 20063, 74649, 280252, 1060439, 4040413, 15488981, 59701236, 231236830, 899559100, 3513314664, 13770811198, 54152480421, 213585706927, 844723104691, 3349274471386, 13310603555085, 53012829376985, 211560158583657, 845856494229348, 3387782725245302, 13590698721293800, 54604853170818121, 219706932640295523
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1 -3*x-x^2 - Sqrt(x^4+2*x^3+7*x^2-6*x+1))/(2*x^3))); // G. C. Greubel, Aug 14 2018
-
Table[Sum[Sum[Binomial[n-k,j]*Binomial[j,k]*Binomial[j+1,k]*2^(n-k-j)/(k+1),{j,0,n-k}],{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Mar 02 2014 *)
CoefficientList[Series[(1-3*x-x^2 -Sqrt[x^4+2*x^3+7*x^2-6*x+1])/(2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
-
a(n)=sum(k=0,floor(n/2), sum(j=0,n-k,binomial(n-k,j)*binomial(j,k)*binomial(j+1,k)*2^(n-k-j)/(k+1)));
vector(22,n,a(n-1))
A178628
A (1,1) Somos-4 sequence associated to the elliptic curve E: y^2 - x*y - y = x^3 + x^2 + x.
Original entry on oeis.org
1, 1, -1, -4, -3, 19, 67, -40, -1243, -4299, 25627, 334324, 627929, -29742841, -372632409, 1946165680, 128948361769, 1488182579081, -52394610324649, -2333568937567764, -5642424912729707, 3857844273728205019
Offset: 1
(p, q) Somos-4 sequences:
A171422,
A174168,
A174170,
A174404,
A174809,
A174811,
A174882,
A178075,
A178077,
A178081,
A178079,
A178376,
A178377,
A178384,
A178417,
A178418,
A178621,
A178622,
A178624,
A178625,
A178627,
A178628,
A178644,
A184019,
A184121,
A188313,
A188315,
A352625.
-
I:=[1,1,-1,-4]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018
-
RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +a[n-2]^2)/a[n-4], a[1] == 1, a[2] == 1, a[3] == -1, a[4] == -4}, a, {n,1,30}] (* G. C. Greubel, Sep 18 2018 *)
-
a(n)=local(E,z);E=ellinit([ -1,1,-1,1,0]);z=ellpointtoz(E,[0,0]); round(ellsigma(E,n*z)/ellsigma(E,z)^(n^2))
-
m=30; v=concat([1,1,-1,-4], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
-
{a(n) = subst(elldivpol(ellinit([-1, 1, -1, 1, 0]), n), x ,0)}; /* Michael Somos, Jul 05 2024 */
-
@CachedFunction
def a(n): # a = A178628
if n<5: return (0,1,1,-1,-4)[n]
else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 05 2024
Showing 1-3 of 3 results.
Comments