cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178082 Numbers k for which 5*k-4, 5*k-2, 5*k+2, and 5*k+4 are primes.

Original entry on oeis.org

3, 21, 39, 165, 297, 375, 417, 651, 693, 1131, 1887, 2601, 3129, 3147, 3213, 3609, 3783, 3885, 4203, 4455, 5061, 6345, 6969, 8757, 10269, 11067, 12597, 13443, 13899, 14445, 15453, 15939, 16209, 16545, 17763, 19569, 19827, 20223, 21969, 23307
Offset: 1

Views

Author

Roger L. Bagula, May 19 2010

Keywords

Examples

			The associated prime quadruplets start as:
     11,    13,    17,    19;   (for n =  3)
    101,   103,   107,   109;   (for n = 21)
    191,   193,   197,   199;   (for n = 39)
    821,   823,   827,   829;
   1481,  1483,  1487,  1489;
   1871,  1873,  1877,  1879;
   2081,  2083,  2087,  2089;
   3251,  3253,  3257,  3259;
   3461,  3463,  3467,  3469;
   5651,  5653,  5657,  5659;
   9431,  9433,  9437,  9439;
  13001, 13003, 13007, 13009;
  15641, 15643, 15647, 15649;
  15731, 15733, 15737, 15739;
  16061, 16063, 16067, 16069;
  18041, 18043, 18047, 18049;
  18911, 18913, 18917, 18919;
  19421, 19423, 19427, 19429.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000]| IsPrime(5*n - 4) and IsPrime(5*n - 2) and IsPrime(5*n + 2) and IsPrime(5*n + 4)]; // Vincenzo Librandi, Nov 30 2010
  • Mathematica
    Flatten[Table[If[PrimeQ[5*n + 2] && PrimeQ[5*n - 2] && PrimeQ[5*n + 4] && PrimeQ[5*n - 4], n, {}], {n, 0, 10000}]]
    Select[Range[25000],AllTrue[5#+{4,2,-2,-4},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 03 2018 *)

Formula

a(n) = A173037(n+1)/5.