cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178099 Numbers k such that exactly three d in the range d <= k/2 exist which divide binomial(k-d-1,d-1) and which are not coprime to k.

Original entry on oeis.org

32, 38, 45, 51, 52, 56, 57, 63, 69, 87, 145, 209, 713, 1073, 3233, 3953, 5609, 8633, 11009, 18209, 23393, 31313, 38009, 56153, 71273, 74513, 131753, 154433, 164009, 189209, 205193, 233273, 245009, 321473, 328313, 356393, 363593, 431633, 471953, 497009
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Comments

Theorem: A number m > 145 is a member if and only if it is a product p*(p+8) such that both p and p+8 are primes (A023202).
The proof is similar to that of Theorem 1 in the Shevelev link. - Vladimir Shevelev, Feb 23 2016

Crossrefs

Programs

  • Maple
    A178099 := proc(n) local dvs,d ; dvs := {} ; for d from 1 to n/2 do if gcd(n,d) > 1 and d in numtheory[divisors]( binomial(n-d-1,d-1)) then dvs := dvs union {d} ; end if; end do: if nops(dvs) = 3 then printf("%d,\n",n); end if; end proc:
    for n from 1 do A178099(n) end do; # R. J. Mathar, May 28 2010
  • Mathematica
    Select[Range[4000], Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 3]] (* Michael De Vlieger, Feb 17 2016 *)
  • PARI
    isok(n) = sum(d=2, n\2, (gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0)) == 3; \\ Michel Marcus, Feb 17 2016
    
  • PARI
    isok(n) = {my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 3, return (0));); nb == 3;} \\ Michel Marcus, Feb 17 2016

Formula

{k: A178101(k) = 3}.

Extensions

Definition corrected, 54 and 91 removed by R. J. Mathar, May 28 2010
a(11)-a(23) from Michel Marcus, Feb 17 2016
a(24)-a(40) from Shevelev Theorem in Comments by Robert Price, May 14 2019