A178099 Numbers k such that exactly three d in the range d <= k/2 exist which divide binomial(k-d-1,d-1) and which are not coprime to k.
32, 38, 45, 51, 52, 56, 57, 63, 69, 87, 145, 209, 713, 1073, 3233, 3953, 5609, 8633, 11009, 18209, 23393, 31313, 38009, 56153, 71273, 74513, 131753, 154433, 164009, 189209, 205193, 233273, 245009, 321473, 328313, 356393, 363593, 431633, 471953, 497009
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..187
- R. J. Mathar, Corrigendum to "On the divisibility...", arxiv:1109.0922 [math.NT], 2011.
- Vladimir Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Intl. J. of Number Theory, 3, no.1 (2007), 119-139.
Programs
-
Maple
A178099 := proc(n) local dvs,d ; dvs := {} ; for d from 1 to n/2 do if gcd(n,d) > 1 and d in numtheory[divisors]( binomial(n-d-1,d-1)) then dvs := dvs union {d} ; end if; end do: if nops(dvs) = 3 then printf("%d,\n",n); end if; end proc: for n from 1 do A178099(n) end do; # R. J. Mathar, May 28 2010
-
Mathematica
Select[Range[4000], Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 3]] (* Michael De Vlieger, Feb 17 2016 *)
-
PARI
isok(n) = sum(d=2, n\2, (gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0)) == 3; \\ Michel Marcus, Feb 17 2016
-
PARI
isok(n) = {my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 3, return (0));); nb == 3;} \\ Michel Marcus, Feb 17 2016
Formula
{k: A178101(k) = 3}.
Extensions
Definition corrected, 54 and 91 removed by R. J. Mathar, May 28 2010
a(11)-a(23) from Michel Marcus, Feb 17 2016
a(24)-a(40) from Shevelev Theorem in Comments by Robert Price, May 14 2019
Comments