cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A178098 Numbers n such that exactly two positive d in the range d <= n/2 exist which divide binomial(n-d-1, d-1) and which are not coprime to n.

Original entry on oeis.org

26, 30, 36, 40, 42, 44, 91, 95, 115, 119, 133, 161, 187, 247, 391, 667, 1147, 1591, 1927, 2491, 3127, 4087, 4891, 5767, 7387, 9991, 10807, 11227, 12091, 17947, 23707, 25591, 28891, 30967, 37627, 38407, 51067, 52891, 55687, 64507, 67591, 70747, 75067, 78391
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Comments

Theorem: A number m > 161 is a member if and only if it is a product p*(p+6) such that both p and p+6 are primes (A023201). The proof is similar to that of Theorem 1 in the Shevelev link. - Vladimir Shevelev, Feb 23 2016

Crossrefs

Programs

  • Mathematica
    Select[Range@ 4000, Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 2]] (* Michael De Vlieger, Feb 17 2016 *)
  • PARI
    isok(n)=my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 2, return (0));); nb == 2; \\ Michel Marcus, Feb 17 2016

Formula

{n: A178101(n) = 2}.

Extensions

91 inserted by R. J. Mathar, May 28 2010
a(18)-a(36) from Michel Marcus, Feb 17 2016
a(37)-a(44) (based on theorem from Vladimir Shevelev in Comments) from Robert Price, May 14 2019

A178101 Cardinality of the set of d, 2<=d<=n/2, which divide binomial(n-d-1,d-1) and are not coprime to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 2, 0, 3, 0, 4, 0, 2, 0, 3, 1, 2, 0, 2, 0, 2, 3, 5, 0, 5, 0, 6, 3, 3, 0, 6, 1, 3, 3, 8, 0, 5, 0, 11, 3, 8, 1, 8, 0, 5, 3, 7, 0, 6, 0, 8, 4, 5, 1, 7, 0, 7, 5, 10, 0, 4, 1, 9, 3, 6, 0, 10, 2, 8, 4, 15, 2, 10, 0, 16, 6, 10
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Comments

Note that every d>1 divides binomial(n-d-1,d-1), if gcd(n,d)=1.
Numbers n with cardinality 0 are in A138389, with cardinatly 1 in A178071, with cardinality 2 in A178098 and with cardinality 3 in A178099.

Crossrefs

Programs

  • Maple
    A178101 := proc(n) local dvs,d ; dvs := {} ; for d from 1 to n/2 do if gcd(n,d) > 1 and d in numtheory[divisors]( binomial(n-d-1,d-1)) then dvs := dvs union {d} ; end if; end do: nops(dvs) end proc: # R. J. Mathar, May 28 2010
  • Mathematica
    a[n_] := Sum[Boole[Divisible[Binomial[n-d-1, d-1], d] && !CoprimeQ[d, n]], {d, 2, n/2}];
    Array[a, 100] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    a(n) = sum(d=2, n\2, (gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0)); \\ Michel Marcus, Feb 17 2016

Extensions

a(54), a(68), a(70), a(72), a(78) etc corrected by R. J. Mathar, May 28 2010

A178105 Let B_n be the set of divisors 2 <= d <= n/2 of binomial(n-d-1,d-1) such that gcd(n,d)>1. The sequence lists the minimal d of B_n, or a(n)=0 if B_n is empty.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 0, 6, 0, 0, 0, 4, 0, 0, 0, 6, 6, 10, 0, 4, 0, 6, 0, 6, 0, 14, 0, 4, 9, 6, 0, 8, 0, 8, 6, 4, 0, 10, 0, 6, 15, 12, 0, 4, 20, 6, 18, 6, 0, 18, 0, 4, 6, 6, 10, 9, 0, 14, 9, 4, 0, 6, 0, 6, 12, 8, 21, 4, 0, 6, 6, 6, 0, 16, 20, 4, 18, 6, 0, 6, 28, 10, 9, 4, 15, 9, 0, 6, 6, 14
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Crossrefs

Programs

  • PARI
    a(n) = {my(md = -1); for (d=2, n\2, if (((binomial(n-d-1,d-1) % d) == 0) && (gcd(n, d) > 1), if (md == -1, md = d, md = min(d, md)));); if (md == -1, 0, md);} \\ Michel Marcus, Feb 07 2016
  • Sage
    def A178105(n):
        return next((d for d in (2..n//2) if binomial(n-d-1,d-1) % d == 0 and gcd(n,d) > 1), 0)
    # D. S. McNeil, Sep 05 2011
    

Extensions

Corrected by R. J. Mathar, Sep 05 2011

A178100 Let B_m be set of divisors 1<=d<=m/2 of binomial(m-d-1,d-1) such that gcd(m,d)>1. The sequence lists m for which the intersection of B_m and B_(m+1) is not empty.

Original entry on oeis.org

26, 45, 50, 51, 54, 56, 57, 62, 63, 64, 65, 69, 77, 80, 81, 85, 86, 87, 90, 92, 93, 94, 98, 99, 110, 114, 116, 117, 118, 119, 122, 123, 124, 125, 128, 129, 132, 133, 134, 135, 140, 141, 144, 146, 147, 152, 153, 154, 155, 158, 159, 160, 161, 164, 165, 170, 171, 174, 175, 176, 177, 182, 183, 184
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Comments

The sequence contains progression {72k+8}_(k>=1).
Moreover, for m=72k+8, k>=1, the intersection of B_m and B_(m+1) contains the 6.
Note that for the subsequence m=56, 64, 80, 86, 92, 98, 116, 117, 118 ... even the intersection of 3 sets: B_m, B_(m+1) and B_(m+2) is not empty. For m=56, it is {18}, for m=64, it is {10}, for m=80, it is {6}, for m=86, it is {18}.

Crossrefs

Programs

  • Mathematica
    B[n_] := Select[Range[1, Floor[n/2]], GCD[n, #]>1 && Divisible[Binomial[n-#-1, #-1], #] &]; aQ[n_]:=Length[Intersection[B[n], B[n+1]]]>0; Select[Range[184], aQ] (* Amiram Eldar, Dec 04 2018 *)
  • Sage
    def is_A178100(n):
        B_m = lambda m: set(d for d in (1..m//2) if binomial(m-d-1,d-1) % d == 0 and gcd(m,d) > 1)
        return bool(B_m(n).intersection(B_m(n+1))) # D. S. McNeil, Sep 05 2011

Extensions

Corrected by R. J. Mathar, Sep 05 2011

A178110 Consider the set of divisors d of binomial(n-d-1,d-1) where gcd(n,d)>1 and 1

Original entry on oeis.org

16, 18, 26, 27, 32, 34, 40, 45, 50, 56, 58, 63, 64, 72, 74, 80, 81, 82, 88, 90, 98, 99, 104, 106, 112, 117, 122, 128, 130, 135, 136, 144, 146, 152, 153, 154, 160, 162, 170, 171, 176, 178, 184, 189, 194, 200, 202, 207, 208, 216, 218, 224, 225, 226, 232, 234, 242
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Examples

			The set for n =14 is {4}, which does not admit 14 into the sequence.
The set for n =16 is {6}, which adds 16 to the sequence.
The set for n = 38 is {4,12,14}, which does not admit 38 into the sequence.
		

Crossrefs

Programs

  • Maple
    isA178110 := proc(n) local dvs, d ; dvs := {} ; for d from 1 to n/2 do if gcd(n, d) > 1 and d in numtheory[divisors]( binomial(n-d-1, d-1)) then dvs := dvs union {d} ; end if; end do: return (min(op(dvs)) = 6) ; end proc:
    for n from 1 to 100 do if isA178110(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Aug 20 2010
  • Mathematica
    bQ[n_] := Module[{B={}}, Do[If[GCD[i,n]>1 && Divisible[Binomial[n-i-1,i-1], i], AppendTo[B,i]], {i, 2, Floor[n/2]}]; Min[B]==6]; Select[Range[250], bQ] (* Amiram Eldar, Jan 20 2019 *)

Extensions

39 removed and 82 added by R. J. Mathar, Aug 20 2010
More terms from Amiram Eldar, Jan 20 2019

A269135 Numbers n which are neither a prime nor a square of a prime such that there is no d, 2<=d<=n/2, which divides binomial(n-d-1,d-1) and is not coprime to n.

Original entry on oeis.org

1, 6, 8, 10, 12, 15, 20, 21, 24, 33, 35, 143, 323, 899, 1763, 3599, 5183, 10403, 11663, 19043, 22499, 32399, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999
Offset: 1

Views

Author

Vladimir Shevelev, Feb 20 2016

Keywords

Comments

Note that every d>1 divides binomial(n-d-1,d-1), if gcd(n,d)=1.
Theorem: A number m > 33 is a member if and only if it is a product p*(p+2), where p is lesser of twin primes (A001359).
This follows from Theorem 1 of the Shevelev (2007) link.

Crossrefs

Programs

  • Mathematica
    selQ[n_] := !PrimeQ[n] && !PrimeQ[Sqrt[n]] && NoneTrue[Range[2, n/2], Divisible[Binomial[n - # - 1, # - 1], #] && !CoprimeQ[n, #]&];
    pp = Select[Prime[Range[200]], PrimeQ[# + 2] &];
    Join[Select[Range[33], selQ], pp (pp + 2) // Rest] (* Jean-François Alcover, Sep 28 2018, after Shevelev's theorem *)
  • PARI
    isok(n) = { if (!isprime(n) && !(issquare(n, &p) && isprime(p)), for (d=2, n\2, if ((gcd(n,d)!=1) && !(binomial(n-d-1,d-1) % d), return (0))); return (1););} \\ Michel Marcus, Feb 20 2016

Extensions

Typos in data corrected by Jean-François Alcover, Sep 28 2018
Showing 1-6 of 6 results.