A178071 Numbers k such that exactly one d, 2 <= d <= k/2, exists which divides binomial(k-d-1, d-1) and is not coprime to k.
14, 16, 18, 22, 27, 28, 39, 55, 65, 77, 85, 221, 437, 1517, 2021, 4757, 6557, 9797, 11021, 12317, 16637, 27221, 38021, 50621, 53357, 77837, 95477, 99221, 123197, 145157, 159197, 194477, 210677, 216221, 239117, 250997, 378221, 416021, 455621, 549077, 576077
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..179
- R. J. Mathar, Corrigendum to "On the divisibility of...", arXiv:1109.0922 [math.NT], 2011.
- Vladimir Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Intl. J. of Number Theory 3, no.1 (2007), 119-139.
Programs
-
Maple
filter:= proc(n) local d, b,count; count:= 0; b:= 1; for d from 2 to n/2 do b:= b * (n-2*d+1)*(n-2*d+2)/(n-d)/(d-1); if igcd(d,n) <> 1 and b mod d = 0 then count:= count+1; if count = 2 then return false fi; fi od; evalb(count=1); end proc: select(filter, [$1..10^4]); # Robert Israel, Feb 17 2016
-
Mathematica
Select[Range@ 4000, Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 1]] (* Michael De Vlieger, Feb 17 2016 *)
-
PARI
isok(n) = {my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 1, return (0));); nb == 1;} \\ Michel Marcus, Feb 17 2016
Formula
{k: A178101(k) = 1}.
Extensions
a(15)-a(23) from Michel Marcus, Feb 17 2016
a(24)-a(41) (from theorem in the Shevelev link) from Robert Price, May 14 2019
Comments