cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A178071 Numbers k such that exactly one d, 2 <= d <= k/2, exists which divides binomial(k-d-1, d-1) and is not coprime to k.

Original entry on oeis.org

14, 16, 18, 22, 27, 28, 39, 55, 65, 77, 85, 221, 437, 1517, 2021, 4757, 6557, 9797, 11021, 12317, 16637, 27221, 38021, 50621, 53357, 77837, 95477, 99221, 123197, 145157, 159197, 194477, 210677, 216221, 239117, 250997, 378221, 416021, 455621, 549077, 576077
Offset: 1

Views

Author

Vladimir Shevelev, May 19 2010

Keywords

Comments

Note that every d > 1 divides binomial(k-d-1, d-1), if gcd(k,d)=1.
As shown in the Shevelev link, the sequence contains p*(p+4) for every p >= 7 in A023200. Thus it is infinite if A023200 is infinite. - Robert Israel, Feb 18 2016
Moreover, similar to proof of Theorem 1 in this link, one can prove that a number m > 85 is a member if and only if it has such a form. - Vladimir Shevelev, Feb 23 2016

Crossrefs

Programs

  • Maple
    filter:= proc(n) local d, b,count;
      count:= 0;
      b:= 1;
      for d from 2 to n/2 do
         b:= b * (n-2*d+1)*(n-2*d+2)/(n-d)/(d-1);
         if igcd(d,n) <> 1 and b mod d = 0 then
            count:= count+1;
            if count = 2 then return false fi;
         fi
      od;
      evalb(count=1);
    end proc:
    select(filter, [$1..10^4]); # Robert Israel, Feb 17 2016
  • Mathematica
    Select[Range@ 4000, Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 1]] (* Michael De Vlieger, Feb 17 2016 *)
  • PARI
    isok(n) = {my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 1, return (0));); nb == 1;} \\ Michel Marcus, Feb 17 2016

Formula

{k: A178101(k) = 1}.

Extensions

a(15)-a(23) from Michel Marcus, Feb 17 2016
a(24)-a(41) (from theorem in the Shevelev link) from Robert Price, May 14 2019

A178098 Numbers n such that exactly two positive d in the range d <= n/2 exist which divide binomial(n-d-1, d-1) and which are not coprime to n.

Original entry on oeis.org

26, 30, 36, 40, 42, 44, 91, 95, 115, 119, 133, 161, 187, 247, 391, 667, 1147, 1591, 1927, 2491, 3127, 4087, 4891, 5767, 7387, 9991, 10807, 11227, 12091, 17947, 23707, 25591, 28891, 30967, 37627, 38407, 51067, 52891, 55687, 64507, 67591, 70747, 75067, 78391
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Comments

Theorem: A number m > 161 is a member if and only if it is a product p*(p+6) such that both p and p+6 are primes (A023201). The proof is similar to that of Theorem 1 in the Shevelev link. - Vladimir Shevelev, Feb 23 2016

Crossrefs

Programs

  • Mathematica
    Select[Range@ 4000, Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 2]] (* Michael De Vlieger, Feb 17 2016 *)
  • PARI
    isok(n)=my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 2, return (0));); nb == 2; \\ Michel Marcus, Feb 17 2016

Formula

{n: A178101(n) = 2}.

Extensions

91 inserted by R. J. Mathar, May 28 2010
a(18)-a(36) from Michel Marcus, Feb 17 2016
a(37)-a(44) (based on theorem from Vladimir Shevelev in Comments) from Robert Price, May 14 2019

A178099 Numbers k such that exactly three d in the range d <= k/2 exist which divide binomial(k-d-1,d-1) and which are not coprime to k.

Original entry on oeis.org

32, 38, 45, 51, 52, 56, 57, 63, 69, 87, 145, 209, 713, 1073, 3233, 3953, 5609, 8633, 11009, 18209, 23393, 31313, 38009, 56153, 71273, 74513, 131753, 154433, 164009, 189209, 205193, 233273, 245009, 321473, 328313, 356393, 363593, 431633, 471953, 497009
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Comments

Theorem: A number m > 145 is a member if and only if it is a product p*(p+8) such that both p and p+8 are primes (A023202).
The proof is similar to that of Theorem 1 in the Shevelev link. - Vladimir Shevelev, Feb 23 2016

Crossrefs

Programs

  • Maple
    A178099 := proc(n) local dvs,d ; dvs := {} ; for d from 1 to n/2 do if gcd(n,d) > 1 and d in numtheory[divisors]( binomial(n-d-1,d-1)) then dvs := dvs union {d} ; end if; end do: if nops(dvs) = 3 then printf("%d,\n",n); end if; end proc:
    for n from 1 do A178099(n) end do; # R. J. Mathar, May 28 2010
  • Mathematica
    Select[Range[4000], Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 3]] (* Michael De Vlieger, Feb 17 2016 *)
  • PARI
    isok(n) = sum(d=2, n\2, (gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0)) == 3; \\ Michel Marcus, Feb 17 2016
    
  • PARI
    isok(n) = {my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 3, return (0));); nb == 3;} \\ Michel Marcus, Feb 17 2016

Formula

{k: A178101(k) = 3}.

Extensions

Definition corrected, 54 and 91 removed by R. J. Mathar, May 28 2010
a(11)-a(23) from Michel Marcus, Feb 17 2016
a(24)-a(40) from Shevelev Theorem in Comments by Robert Price, May 14 2019

A178105 Let B_n be the set of divisors 2 <= d <= n/2 of binomial(n-d-1,d-1) such that gcd(n,d)>1. The sequence lists the minimal d of B_n, or a(n)=0 if B_n is empty.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 0, 6, 0, 0, 0, 4, 0, 0, 0, 6, 6, 10, 0, 4, 0, 6, 0, 6, 0, 14, 0, 4, 9, 6, 0, 8, 0, 8, 6, 4, 0, 10, 0, 6, 15, 12, 0, 4, 20, 6, 18, 6, 0, 18, 0, 4, 6, 6, 10, 9, 0, 14, 9, 4, 0, 6, 0, 6, 12, 8, 21, 4, 0, 6, 6, 6, 0, 16, 20, 4, 18, 6, 0, 6, 28, 10, 9, 4, 15, 9, 0, 6, 6, 14
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Crossrefs

Programs

  • PARI
    a(n) = {my(md = -1); for (d=2, n\2, if (((binomial(n-d-1,d-1) % d) == 0) && (gcd(n, d) > 1), if (md == -1, md = d, md = min(d, md)));); if (md == -1, 0, md);} \\ Michel Marcus, Feb 07 2016
  • Sage
    def A178105(n):
        return next((d for d in (2..n//2) if binomial(n-d-1,d-1) % d == 0 and gcd(n,d) > 1), 0)
    # D. S. McNeil, Sep 05 2011
    

Extensions

Corrected by R. J. Mathar, Sep 05 2011

A178109 The maximum number d, 2 <= d <= n/2, which divides binomial(n-d-1,d-1) and is not coprime to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 6, 0, 6, 0, 0, 0, 4, 0, 0, 0, 8, 6, 10, 0, 8, 0, 14, 0, 14, 0, 15, 0, 14, 9, 14, 0, 9, 0, 10, 15, 20, 0, 22, 0, 22, 21, 18, 0, 21, 20, 22, 24, 24, 0, 26, 0, 28, 24, 30, 10, 28, 0, 30, 24, 26, 0, 33, 0, 30, 20, 30, 21, 28, 0, 38, 33, 38, 0, 28, 20, 36
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Comments

If no such divisors d exist, a(n)=0.

Crossrefs

Programs

  • Maple
    A178109 := proc(n) local dvs,d ; dvs := {} ; for d from 1 to n/2 do if gcd(n,d) > 1 and d in numtheory[divisors]( binomial(n-d-1,d-1)) then dvs := dvs union {d} ; end if; end do:
    if nops(dvs) = 0 then 0; else max(op(dvs)) ; end if; end proc:
    seq(A178109(n),n=1..90) ; # R. J. Mathar, May 28 2010
    # Alternative:
    f:= proc(n) local d;
      for d from floor(n/2) to 2 by -1 do
         if igcd(d,n) > 1 and binomial(n-d-1,d-1) mod d = 0 then return d fi
      od;
      0
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 15 2019
  • Mathematica
    a[n_] := If[n==1, 0, Module[{d=Floor[n/2]}, While[d>1 && (GCD[n, d]==1 || !Divisible[Binomial[n-d-1,d-1], d]), d--]; If[d==1, d=0]; d]]; Array[a, 100] (* Amiram Eldar, Dec 04 2018 *)

Extensions

a(39), a(54) and a(70) corrected by R. J. Mathar, May 28 2010

A178100 Let B_m be set of divisors 1<=d<=m/2 of binomial(m-d-1,d-1) such that gcd(m,d)>1. The sequence lists m for which the intersection of B_m and B_(m+1) is not empty.

Original entry on oeis.org

26, 45, 50, 51, 54, 56, 57, 62, 63, 64, 65, 69, 77, 80, 81, 85, 86, 87, 90, 92, 93, 94, 98, 99, 110, 114, 116, 117, 118, 119, 122, 123, 124, 125, 128, 129, 132, 133, 134, 135, 140, 141, 144, 146, 147, 152, 153, 154, 155, 158, 159, 160, 161, 164, 165, 170, 171, 174, 175, 176, 177, 182, 183, 184
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Comments

The sequence contains progression {72k+8}_(k>=1).
Moreover, for m=72k+8, k>=1, the intersection of B_m and B_(m+1) contains the 6.
Note that for the subsequence m=56, 64, 80, 86, 92, 98, 116, 117, 118 ... even the intersection of 3 sets: B_m, B_(m+1) and B_(m+2) is not empty. For m=56, it is {18}, for m=64, it is {10}, for m=80, it is {6}, for m=86, it is {18}.

Crossrefs

Programs

  • Mathematica
    B[n_] := Select[Range[1, Floor[n/2]], GCD[n, #]>1 && Divisible[Binomial[n-#-1, #-1], #] &]; aQ[n_]:=Length[Intersection[B[n], B[n+1]]]>0; Select[Range[184], aQ] (* Amiram Eldar, Dec 04 2018 *)
  • Sage
    def is_A178100(n):
        B_m = lambda m: set(d for d in (1..m//2) if binomial(m-d-1,d-1) % d == 0 and gcd(m,d) > 1)
        return bool(B_m(n).intersection(B_m(n+1))) # D. S. McNeil, Sep 05 2011

Extensions

Corrected by R. J. Mathar, Sep 05 2011

A178110 Consider the set of divisors d of binomial(n-d-1,d-1) where gcd(n,d)>1 and 1

Original entry on oeis.org

16, 18, 26, 27, 32, 34, 40, 45, 50, 56, 58, 63, 64, 72, 74, 80, 81, 82, 88, 90, 98, 99, 104, 106, 112, 117, 122, 128, 130, 135, 136, 144, 146, 152, 153, 154, 160, 162, 170, 171, 176, 178, 184, 189, 194, 200, 202, 207, 208, 216, 218, 224, 225, 226, 232, 234, 242
Offset: 1

Views

Author

Vladimir Shevelev, May 20 2010

Keywords

Examples

			The set for n =14 is {4}, which does not admit 14 into the sequence.
The set for n =16 is {6}, which adds 16 to the sequence.
The set for n = 38 is {4,12,14}, which does not admit 38 into the sequence.
		

Crossrefs

Programs

  • Maple
    isA178110 := proc(n) local dvs, d ; dvs := {} ; for d from 1 to n/2 do if gcd(n, d) > 1 and d in numtheory[divisors]( binomial(n-d-1, d-1)) then dvs := dvs union {d} ; end if; end do: return (min(op(dvs)) = 6) ; end proc:
    for n from 1 to 100 do if isA178110(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Aug 20 2010
  • Mathematica
    bQ[n_] := Module[{B={}}, Do[If[GCD[i,n]>1 && Divisible[Binomial[n-i-1,i-1], i], AppendTo[B,i]], {i, 2, Floor[n/2]}]; Min[B]==6]; Select[Range[250], bQ] (* Amiram Eldar, Jan 20 2019 *)

Extensions

39 removed and 82 added by R. J. Mathar, Aug 20 2010
More terms from Amiram Eldar, Jan 20 2019
Showing 1-7 of 7 results.