A178098 Numbers n such that exactly two positive d in the range d <= n/2 exist which divide binomial(n-d-1, d-1) and which are not coprime to n.
26, 30, 36, 40, 42, 44, 91, 95, 115, 119, 133, 161, 187, 247, 391, 667, 1147, 1591, 1927, 2491, 3127, 4087, 4891, 5767, 7387, 9991, 10807, 11227, 12091, 17947, 23707, 25591, 28891, 30967, 37627, 38407, 51067, 52891, 55687, 64507, 67591, 70747, 75067, 78391
Offset: 1
Keywords
Links
- Robert Price, Table of n, a(n) for n = 1..353
- R. J. Mathar, Corrigendum to "On the divisibility of...", arXiv:1109.0922 [math.NT], 2011.
- V. Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Intl. J. of Number Theory 3, no.1 (2007), 119-139.
Programs
-
Mathematica
Select[Range@ 4000, Function[n, Count[Range[n/2], k_ /; And[! CoprimeQ[n, k], Divisible[Binomial[n - k - 1, k - 1], k]]] == 2]] (* Michael De Vlieger, Feb 17 2016 *)
-
PARI
isok(n)=my(nb = 0); for (d=2, n\2, if ((gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0), nb++); if (nb > 2, return (0));); nb == 2; \\ Michel Marcus, Feb 17 2016
Formula
{n: A178101(n) = 2}.
Extensions
91 inserted by R. J. Mathar, May 28 2010
a(18)-a(36) from Michel Marcus, Feb 17 2016
a(37)-a(44) (based on theorem from Vladimir Shevelev in Comments) from Robert Price, May 14 2019
Comments