A178101 Cardinality of the set of d, 2<=d<=n/2, which divide binomial(n-d-1,d-1) and are not coprime to n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 1, 0, 2, 0, 3, 0, 4, 0, 2, 0, 3, 1, 2, 0, 2, 0, 2, 3, 5, 0, 5, 0, 6, 3, 3, 0, 6, 1, 3, 3, 8, 0, 5, 0, 11, 3, 8, 1, 8, 0, 5, 3, 7, 0, 6, 0, 8, 4, 5, 1, 7, 0, 7, 5, 10, 0, 4, 1, 9, 3, 6, 0, 10, 2, 8, 4, 15, 2, 10, 0, 16, 6, 10
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- R. J. Mathar, Corrigendum to "On the divisibility....", arXiv:1109.0922 [math.NT], 2011.
- V. Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Intl. J. of Number Theory, 3, no. 1 (2007), 119-139.
Programs
-
Maple
A178101 := proc(n) local dvs,d ; dvs := {} ; for d from 1 to n/2 do if gcd(n,d) > 1 and d in numtheory[divisors]( binomial(n-d-1,d-1)) then dvs := dvs union {d} ; end if; end do: nops(dvs) end proc: # R. J. Mathar, May 28 2010
-
Mathematica
a[n_] := Sum[Boole[Divisible[Binomial[n-d-1, d-1], d] && !CoprimeQ[d, n]], {d, 2, n/2}]; Array[a, 100] (* Jean-François Alcover, Nov 17 2017 *)
-
PARI
a(n) = sum(d=2, n\2, (gcd(d, n) != 1) && ((binomial(n-d-1,d-1) % d) == 0)); \\ Michel Marcus, Feb 17 2016
Extensions
a(54), a(68), a(70), a(72), a(78) etc corrected by R. J. Mathar, May 28 2010
Comments