cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178208 Number of ways to choose three points in an (n X n)-grid (or geoplane).

Original entry on oeis.org

0, 4, 84, 560, 2300, 7140, 18424, 41664, 85320, 161700, 287980, 487344, 790244, 1235780, 1873200, 2763520, 3981264, 5616324, 7775940, 10586800, 14197260, 18779684, 24532904, 31684800, 40495000, 51257700, 64304604, 80007984, 98783860, 121095300, 147455840, 178433024
Offset: 1

Views

Author

Martin Renner, May 22 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Binomial[Range[30]^2, 3] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,4,84,560,2300,7140,18424},30] (* Harvey P. Dale, Nov 09 2012 *)
  • PARI
    a(n)=binomial(n^2,3) \\ Charles R Greathouse IV, Feb 19 2017

Formula

a(n) = A000938(n) + A045996(n).
a(n) = binomial(n^2,3) = 1/6*n^2*(n^2-1)*(n^2-2). - Martin Renner, May 23 2010
G.f.: 4*x^2*(1+x)*(1+13*x+x^2)/(1-x)^7. - Colin Barker, Jan 19 2012
a(1)=0, a(2)=4, a(3)=84, a(4)=560, a(5)=2300, a(6)=7140, a(7)=18424, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Nov 09 2012
Sum_{n>=2} 1/a(n) = Pi^2/2 - 15/4 - 3*Pi*cot(sqrt(2)*Pi)/(2*sqrt(2)). - Amiram Eldar, Feb 17 2024

Extensions

Extended by Ray Chandler, May 03 2011
Corrected by Harvey P. Dale, Nov 09 2012