A227327
Number of non-equivalent ways to choose two points in an equilateral triangle grid of side n.
Original entry on oeis.org
0, 1, 4, 10, 22, 41, 72, 116, 180, 265, 380, 526, 714, 945, 1232, 1576, 1992, 2481, 3060, 3730, 4510, 5401, 6424, 7580, 8892, 10361, 12012, 13846, 15890, 18145, 20640, 23376, 26384, 29665, 33252, 37146, 41382, 45961, 50920, 56260, 62020, 68201, 74844
Offset: 1
for n = 3 there are the following 4 choices of 2 points (X) (rotations and reflections being ignored):
X X X .
X . . . . . X X
. . . X . . . X . . . .
Corresponding questions about the number of ways in a square grid are treated by
A083374 (2 points) and
A178208 (3 points).
-
Table[b = n^4 + 2*n^3 + 8*n^2; If[EvenQ[n], c = b - 8*n, c = b - 2*n - 9]; c/48, {n, 43}] (* T. D. Noe, Jul 09 2013 *)
CoefficientList[Series[-x (x^3 - x^2 + x + 1) / ((x - 1)^5 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 02 2013 *)
LinearRecurrence[{3,-1,-5,5,1,-3,1},{0,1,4,10,22,41,72},50] (* Harvey P. Dale, May 11 2019 *)
A240444
Triangle T(n, k) = Number of ways to arrange k indistinguishable points on an n X n square grid so that no four of them are vertices of a square of any orientation.
Original entry on oeis.org
1, 1, 1, 4, 6, 4, 1, 9, 36, 84, 120, 96, 32, 1, 16, 120, 560, 1800, 4128, 6726, 7492, 5238, 1924, 232, 1, 25, 300, 2300, 12600, 52080, 166702, 416622, 808488, 1196196, 1306464, 1001364, 497940, 141336, 18208, 636, 1, 36, 630, 7140, 58800, 373632, 1895938, 7835492
Offset: 1
The triangle begins:
1, 1;
1, 4, 6, 4;
1, 9, 36, 84, 120, 96, 32;
1, 16, 120, 560, 1800, 4128, 6726, 7492, 5238, 1924, 232;
...
A240826
Number of ways to choose three points on a centered hexagonal grid of size n.
Original entry on oeis.org
0, 35, 969, 7770, 35990, 121485, 333375, 790244, 1679580, 3280455, 5989445, 10349790, 17083794, 27128465, 41674395, 62207880, 90556280, 128936619, 180007425, 246923810, 333395790, 443749845, 582993719, 756884460, 971999700, 1235812175, 1556767485, 1944365094
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Hex Number.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
-
seq(binomial(3*n^2-3*n+1, 3), n=1..28); # Martin Renner, May 31 2014
op(PolynomialTools[CoefficientList](convert(series(-x^2*(35*x^4+724*x^3+1722*x^2+724*x+35)/(x-1)^7, x=0, 29), polynom), x)[2..29]); # Martin Renner, May 31 2014
-
CoefficientList[Series[- x(35 x^4 + 724 x^3 + 1722 x^2 + 724 x + 35)/(x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 19 2014 *)
LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,35,969,7770,35990,121485,333375},40] (* Harvey P. Dale, Sep 12 2019 *)
A227436
Triangle T(n, k) of the number of n X n binary matrices with k = 0..n^2 1's and no more than three 1's in the corners of any square sub-block.
Original entry on oeis.org
1, 1, 1, 4, 6, 4, 0, 1, 9, 36, 84, 121, 101, 38, 4, 0, 0, 1, 16, 120, 560, 1806, 4200, 7096, 8532, 6929, 3444, 876, 84, 2, 0, 0, 0, 0, 1, 25, 300, 2300, 12620, 52500, 170830, 441554, 910568, 1490996, 1912700, 1879432, 1368707
Offset: 1
T(n, k) written as a triangle
1,1;
1,4,6,4,0;
1,9,36,84,121,101,38,4,0,0;
1,16,120,560,1806,4200,7096,8532,6929,3444,876,84,2,0,0,0,0;
...
For n = 4 there are 2 matrices with exactly k = 12 1's so that no more than three 1's are in the corners of any square sub-block.
[0 1 1 1] [1 1 1 0]
[1 1 0 1] [1 0 1 1]
[1 0 1 1] [1 1 0 1]
[1 1 1 0] [0 1 1 1]
Written T(n,k) as a triangle, column k = 1 gives the square numbers
A000290, column k = 2 is
A083374, column k = 3 is
A178208.
A227133(n) is the highest index k of a number greater than zero in the n-th row.
A217482
Quarter-square tetrahedrals: a(n) = k*(k - 1)*(k - 2)/6, k = A002620(n).
Original entry on oeis.org
0, 0, 0, 0, 4, 20, 84, 220, 560, 1140, 2300, 4060, 7140, 11480, 18424, 27720, 41664, 59640, 85320, 117480, 161700, 215820, 287980, 374660, 487344, 620620, 790244, 988260, 1235780, 1521520, 1873200, 2275280, 2763520, 3317040, 3981264, 4728720, 5616324, 6608580
Offset: 0
- Physics Forums, A Tetrahedral Counterpart to Ramanujan-Nagell Triangular Numbers?, Nov 2010.
- Index entries for linear recurrences with constant coefficients, signature (2,4,-10,-5,20,0,-20,5,10,-4,-2,1).
-
a:= n-> binomial(floor(n^2/4), 3):
seq(a(n), n=0..41); # Alois P. Heinz, Feb 16 2024
-
(#*(#-1)*(#-2)/6)& /@ Table[Floor[n^2/4], {n, 0, 20}] (* Amiram Eldar, Feb 17 2024 *)
-
a(n)=my(k=floor(n^2/4));k*(k-1)*(k-2)/6 \\ Charles R Greathouse IV, Oct 05 2012
Showing 1-5 of 5 results.
Comments