cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A240443 Maximal number of points that can be placed on an n X n square grid so that no four of them are vertices of a square with any orientation.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 27, 34, 42, 50
Offset: 1

Views

Author

Heinrich Ludwig, May 07 2014

Keywords

Comments

a(10) >= 50, a(11) >= 58. - Robert Israel, Apr 08 2016
a(12) >= 67. - Robert Israel, Apr 12 2016
a(13) >= 76, a(14) >= 86, a(15) >= 95, a(16) >= 106. - Peter Karpov, Jun 04 2016

Examples

			On a 9 X 9 grid a maximum of 42 points (x) can be placed so that no four of them are vertices of an (arbitrarily oriented) square. An example:
     x x . . x . x . x
     . x . . x x x x .
     x x x . . x . . x
     x . x x x . . x x
     . . . . x x . . .
     . x . x x . . . x
     x x x . x . . . x
     x . x . . . . x x
     x . . x x x x x .
		

Crossrefs

Cf. A227133 (where we are concerned only with subsquares oriented parallel to the sides of the grid), A240114, A227308, A240444.

Extensions

a(10) from Dominik Stadlthanner using integer programming, Apr 08 2020

A240445 Numbers of ways to place five indistinguishable points on an n X n square grid so that no four of them are vertices of a square of any orientation.

Original entry on oeis.org

96, 4128, 52080, 373632, 1898064, 7604352, 25580016, 75208320, 198651024, 480768288, 1081848768, 2289041664, 4594218720, 8808178176, 16223664672, 28842649344, 49686723072, 83213333280, 135864971088, 216783321216, 338725852080, 519228378240, 782063802000
Offset: 3

Views

Author

Heinrich Ludwig, May 09 2014

Keywords

Comments

All elements of the sequence are multiples of 48.

Crossrefs

Programs

  • Magma
    [(n^10 - 10*n^8 + 25*n^6 - 16*n^2)/120: n in [3..30]]; // Wesley Ivan Hurt, May 09 2014
  • Maple
    A240445:=n->(n^10 - 10*n^8 + 25*n^6 - 16*n^2)/120; seq(A240445(n), n=3..30); # Wesley Ivan Hurt, May 09 2014
  • Mathematica
    Table[(n^10 - 10*n^8 + 25*n^6 - 16*n^2)/120, {n, 3, 30}] (* Wesley Ivan Hurt, May 09 2014 *)

Formula

a(n) = (n^10 - 10*n^8 + 25*n^6 - 16*n^2)/120.
G.f.: -48*x^3*(x+1)*(2*x^4+62*x^3+187*x^2+62*x+2) / (x-1)^11. - Colin Barker, May 09 2014

A240446 Numbers of ways to place six indistinguishable points on an n X n square grid so that no four of them are vertices of a square of any orientation.

Original entry on oeis.org

32, 6726, 166702, 1895938, 13790212, 74380406, 322961410, 1188292304, 3835115230, 11126671552, 29549197210, 72828900336, 168386628278, 368360769558, 767733010896, 1533170797506, 2947620125778, 5477517677094, 9871827636572, 17305042166112, 29579923394356, 49410229230976, 80809088567212, 129615220384928, 204196987161028, 316383511891814, 482682961875178, 725860819178050
Offset: 3

Views

Author

Heinrich Ludwig, May 09 2014

Keywords

Crossrefs

Formula

a(n) = (n^12 - 15*n^10 + 55*n^8 + 75*n^6)/720 + O(n^4).

Extensions

a(12)-a(14) from Heinrich Ludwig, Dec 01 2016
a(15)-a(30) from Max Alekseyev, Feb 19 2024
Showing 1-3 of 3 results.