A181136 G.f.: A(x) = Sum_{n>=0} x^n/[Sum_{k=0..n} C(n,k)^3*(-x)^k].
1, 1, 2, 10, 92, 1264, 26138, 753322, 28451978, 1385043022, 84971475986, 6393154081582, 580295829204452, 62818032904371952, 8005929383232314294, 1187186361565313907994, 203034917331580351972520
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 92*x^4 + 1264*x^5 +... which equals the series: A(x) = 1 + x/(1-x) + x^2/(1-2^3*x+x^2) + x^3/(1-3^3*x+3^3*x^2-x^3) + x^4/(1-4^3*x+6^3*x^2-4^3*x^3+x^4) + x^5/(1-5^3*x+10^3*x^2-10^3*x^3+5^3*x^4-x^5) +...
Links
- Robert Israel, Table of n, a(n) for n = 0..248
Crossrefs
Cf. A178324.
Programs
-
Maple
G:= add(x^n/hypergeom([-n,-n,-n],[1,1],x),n=0..50): S:= series(G501,x,51): seq(coeff(S,x,n),n=0..50); # Robert Israel, Dec 24 2017
-
PARI
{a(n)=polcoeff(sum(m=0, n, x^m/sum(k=0, m, binomial(m, k)^3*(-x)^k+x*O(x^n))), n)}
Formula
G.f.: Sum_{n>=0} x^n/hypergeom([-n,-n,-n],[1,1],x). - Robert Israel, Dec 24 2017
Comments