A178328 Numbers k such that k^p-p is prime, where p is product of the digits of k.
2, 21, 121, 211, 223, 631, 1211, 1663, 1811, 1831, 2127, 2813, 4211, 5497, 6211, 8411, 12149, 12287, 18113, 19121, 23311, 24113, 24311, 27311, 31651, 32129, 32221, 34171, 38131, 41213, 47231, 49183, 53831, 56831, 111223, 111421, 111811, 121279, 123121, 129151, 141233, 156271, 157651, 161171
Offset: 1
Examples
21^(2*1) - (2*1) is prime so 21 is in the sequence.
Programs
-
Mathematica
Do[p=Apply[Times, IntegerDigits[n]]; If[PrimeQ[n^p-p], Print[n]], {n, 54891}] (* or *) ppdQ[n_]:=Module[{p=Times@@IntegerDigits[n]},PrimeQ[n^p-p]]; Select[ Range[ 120000],ppdQ] (* Harvey P. Dale, Nov 12 2017 *)
Extensions
a(34)-a(37) from Max Alekseyev, Feb 19 2012
a(38)-a(44) from Michael S. Branicky, Jun 25 2023
Comments