cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178354 Numbers m such that d(1)^1 + d(2)^2 + ... + d(p)^p = d(1)^p + d(2)^(p-1) +... + d(p)^1, where d(i), i=1..p, are the digits of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 22, 33, 44, 55, 66, 77, 88, 99, 100, 101, 110, 111, 120, 121, 130, 131, 140, 141, 150, 151, 160, 161, 170, 171, 180, 181, 190, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454
Offset: 1

Views

Author

Michel Lagneau, Dec 21 2010

Keywords

Comments

A179309 is included in this sequence.
All palindromes are in this sequence. - Harvey P. Dale, Mar 03 2013

Examples

			14603 is in the sequence because :
1 + 4^2 + 6^3 + 0^4 + 3^5 = 3 + 0^2 + 6^3 + 4^4 + 1^5 = 476.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 50000 do:l:=length(n):n0:=n:s1:=0:s2:=0:for
      m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10):n0:=v :s1:=s1+u^(l-m+1):s2:=s2+u^m:od:
      if s1=s2 then printf(`%d, `,n):else fi:od:
  • Mathematica
    drQ[n_]:=Module[{id=IntegerDigits[n],len},len=Length[id];Total[ id^Range[ len]] == Total[id^Range[len,1,-1]]]; Select[Range[500],drQ] (* Harvey P. Dale, Aug 04 2018 *)
  • PARI
    isok(m) = my(d=digits(m), p=#d); sum(k=1, p, d[k]^k) == sum(k=1, p, d[k]^(p-k+1)); \\ Michel Marcus, Mar 22 2021
    
  • Python
    def digpow(s): return sum(int(d)**i for i, d in enumerate(s, start=1))
    def aupto(limit):
      alst = []
      for k in range(1, limit+1):
        s = str(k)
        if digpow(s) == digpow(s[::-1]): alst.append(k)
      return alst
    print(aupto(454)) # Michael S. Branicky, Mar 23 2021