A178404 Numbers such that the rounded up arithmetic mean of their digits equals their digital root.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 99, 100, 149, 158, 167, 176, 185, 194, 239, 248, 257, 266, 275, 284, 293, 329, 338, 347, 356, 365, 374, 383, 392, 419, 428, 437, 446, 455, 464, 473, 482, 491, 509, 518, 527, 536, 545, 554, 563, 572, 581, 590, 608, 617, 626, 635
Offset: 1
Examples
From _Reinhard Zumkeller_, May 28 2010: (Start) 1093 --> 1+0+9+3=13 --> A010888(1093) = 1+3 = 4 and also 1093 --> 1+0+9+3=13 --> A004427(1093) = ceiling(13/4) = 4, therefore 1093 is a term: a(100) = 1093. (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A178404 := proc(n) option remember: local k: if(n=1)then return 0: fi: k:=procname(n-1)+1: do if(ceil(add(d, d=convert(k,base,10))/length(k))-1 = (k-1) mod 9)then return k: fi: k:=k+1: od: end: seq(A178404(n),n=1..57); # Nathaniel Johnston, May 04 2011
-
Mathematica
amdrQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]==Ceiling[ Mean[ IntegerDigits[n]]]; Select[Range[0,1000],amdrQ] (* Harvey P. Dale, Oct 10 2013 *)
Comments