cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178457 Partial sums of floor(2^n/23).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 8, 19, 41, 85, 174, 352, 708, 1420, 2844, 5693, 11391, 22788, 45583, 91173, 182353, 364714, 729436, 1458880, 2917768, 5835544, 11671097, 23342203, 46684416, 93368843, 186737697, 373475405, 746950822, 1493901656, 2987803324, 5975606660, 11951213332, 23902426677, 47804853367, 95609706748
Offset: 0

Views

Author

Mircea Merca, Dec 22 2010

Keywords

Examples

			a(21) = 0 + 0 + 0 + 0 + 0 + 1 + 2 + 5 + 11 + 22 + 44 + 89 + 178 + 356 + 712 + 1424 + 2849 + 5698 + 11397 + 22795 + 45590 + 91180 = 182353.
		

Programs

  • Magma
    [Round((22*2^n-92*n-24)/253): n in [0..40]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(round((22*2^n-92*n-22)/253), n=1..40)
  • Mathematica
    Accumulate[Floor[2^Range[0,40]/23]] (* or *) LinearRecurrence[{3,-2,0,0,0,0,0,0,0,0,1,-3,2},{0,0,0,0,0,1,3,8,19,41,85,174,352},50] (* Harvey P. Dale, Mar 05 2016 *)
  • PARI
    a(n)=(44<Charles R Greathouse IV, Jun 23 2011

Formula

a(n) = round((22*2^n - 92*n - 24)/253).
a(n) = floor((22*2^n - 92*n + 100)/253).
a(n) = ceiling((22*2^n - 92*n - 148)/253).
a(n) = round((22*2^n - 92*n - 22)/253).
a(n) = a(n-11) + 89*2^(n-10) - 4, n > 10.
G.f.: -x^5*(x^6 + x^3 + x^2 + 1)/((x-1)^2*(2*x-1)*(x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). [Colin Barker, Oct 27 2012]