cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178460 Partial sums of floor(2^n/127).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 7, 15, 31, 63, 127, 256, 514, 1030, 2062, 4126, 8254, 16510, 33023, 66049, 132101, 264205, 528413, 1056829, 2113661, 4227326, 8454656, 16909316, 33818636, 67637276
Offset: 1

Views

Author

Mircea Merca, Dec 22 2010

Keywords

Comments

Partials sums of A117302.

Examples

			a(10) = a(3) + 2^4 - 1 = 15.
		

Crossrefs

Cf. A117302.

Programs

  • Magma
    [Round((14*2^n-127*n+75)/889): n in [1..40]]; // Vincenzo Librandi, Jun 21 2011
  • Maple
    A178460 := proc(n) add( floor(2^i/127),i=0..n) ; end proc:

Formula

a(n) = round((14*2^n - 127*n + 75)/889).
a(n) = floor((14*2^n - 127*n + 284)/889).
a(n) = ceiling((14*2^n - 127*n - 134)/889).
a(n) = round((14*2^n - 127*n - 14)/889).
a(n) = a(n-7) + 2^(n-6) - 1, n > 6.
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-7) - 3*a(n-8) + 2*a(n-9), n > 9.
G.f.: -x^7/((2*x-1)*(x-1)^2*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)).
From Seiichi Manyama, Dec 22 2023: (Start)
a(n) = Sum_{k=0..n} 2^(n-k) * floor(k/7).
a(n) = floor(2^(n+1)/127) - floor((n+1)/7). (End)