cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A292447 Primes p such that sigma((p + 1) / 2) is a prime q.

Original entry on oeis.org

3, 7, 17, 31, 127, 577, 3361, 4801, 6961, 8191, 31249, 131071, 171697, 524287, 982801, 1062881, 1104097, 1367857, 1407841, 1468897, 2705137, 3770257, 6822817, 7785457, 10941841, 14183137, 15557041, 18495361, 20749681, 25304497, 36278161, 38878561, 44575681
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2017

Keywords

Comments

A companion sequence of A249902.
Mersenne primes p = 2^k - 1 (A000668) are terms: sigma((p + 1) / 2) = sigma((2^k - 1 + 1) / 2) = sigma(2^(k - 1)) = 2^k - 1.
A subsequence of A178490. - Altug Alkan, Oct 02 2017

Examples

			17 is a term because sigma((17 + 1) / 2) = sigma(9) = 13 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^8] | IsPrime(n) and IsPrime(SumOfDivisors((n+1) div 2))];
    
  • Mathematica
    Select[Prime@ Range[10^6], PrimeQ@ DivisorSigma[1, (# + 1)/2] &] (* Michael De Vlieger, Sep 16 2017 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if(isprime(sigma((p+1)/2)), print1(p, ", "))); \\ Altug Alkan, Oct 02 2017

Formula

a(n) = 2*A249902(n) - 1. - Altug Alkan, Oct 02 2017

A178491 Primes of the form 2*p^k-1, where p is prime and k > 1.

Original entry on oeis.org

7, 17, 31, 53, 97, 127, 241, 337, 577, 1249, 3361, 3697, 4373, 4801, 6961, 8191, 10657, 13121, 23761, 25537, 31249, 32257, 33613, 37537, 49297, 59581, 64081, 65521, 77617, 79201, 89041, 126001, 131071, 138337, 153457, 159013, 171697, 193441
Offset: 1

Views

Author

Keywords

Comments

Includes the Mersenne primes > 3 (A000668) and primes of the form 2p^2-1 (A092057) as subsequences. Its union with A005383 gives A178490.

Examples

			a(1) = 7 = 2*2^2-1 and a(2) = 17 = 2*3^2-1 are also in A092057, and a(3) = 31 = 2*2^4-1 = A000668(3), but a(4) = 53 = 2*3^3-1 is in neither of these subsequences.
		

Crossrefs

Programs

  • Maple
    N:= 10^6: # for terms <= N
    P:= select(isprime,[2,seq(i,i=3..floor(sqrt((N+1)/2)),2)]):
    R:= NULL:
    for p in P do
      for k from 2 do
        v:= 2*p^k-1;
        if v > N then break fi;
        if isprime(v) then R:= R,v fi;
    od od:
    sort([R]); # Robert Israel, Feb 20 2024
  • Mathematica
    Select[Prime[Range[20000]],!PrimeQ[(#+1)/2]&&Length[FactorInteger[(#+1)/2]]==1&]
  • PARI
    is_A178491(n) = isprime(n) & ispower((n+1)/2,,&n) & isprime(n)

A370452 Prime powers of the form 2*p^k-1, where p is prime and k >= 1.

Original entry on oeis.org

3, 5, 7, 9, 13, 17, 25, 31, 37, 49, 53, 61, 73, 81, 97, 121, 127, 157, 193, 241, 277, 313, 337, 361, 397, 421, 457, 541, 577, 613, 625, 661, 673, 733, 757, 841, 877, 997, 1093, 1153, 1201, 1213, 1237, 1249, 1321, 1381, 1453, 1621, 1657, 1681, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2401, 2473, 2557, 2593, 2797, 2857
Offset: 1

Views

Author

Keith J. Bauer, Feb 18 2024

Keywords

Comments

Also, sizes of finite fields such that halving the size of their unit group is also the unit group of a field. - Keith J. Bauer, Jun 20 2024
Original motivation for this sequence: let k be a term of this sequence. Then consider the finite field of k elements, denoted by F_k. Adjoin the hyperbolic unit j^2 = 1 to F_k to form a ring whose elements are of the form a + bj for a, b in F_k. Let M be the multiplication monoid of F_k[j] and let ~ be the equivalence relation on the elements of M defined by a + bj ~ b + aj (with no further unnecessary equivalences). Then M/~ is isomorphic to the multiplication monoid of the ring F_k x F_(k+1)/2 and therefore there exists a ring with M/~ as its multiplication. For prime powers k not in this sequence, no such ring will exist. See the link for a proof of this fact.

Examples

			3 = 2*2^1 - 1 = 3^1;
5 = 2*3^1 - 1 = 5^1;
7 = 2*2^2 - 1 = 7^1;
9 = 2*5^1 - 1 = 3^2.
		

Crossrefs

Cf. A178490, A246655 (prime powers).

Programs

  • Maple
    filter:= n -> nops(numtheory:-factorset(n))=1 and nops(numtheory:-factorset((n+1)/2))=1:
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Feb 20 2024
  • Mathematica
    Select[Range[3000], PrimePowerQ[#] && PrimePowerQ[(# + 1)/2] &] (* Amiram Eldar, Feb 19 2024 *)
  • PARI
    isok(q) = isprimepower(q) && (q%2) && isprimepower((q+1)/2); \\ Michel Marcus, Jun 14 2024

A380101 Numbers k such that omega(k-th triangular number) = 2, where omega = A001221.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 17, 18, 22, 25, 26, 31, 37, 46, 49, 53, 58, 61, 73, 81, 82, 97, 106, 121, 127, 157, 162, 166, 178, 193, 226, 241, 242, 250, 256, 262, 277, 313, 337, 346, 358, 361, 382, 397, 421, 457, 466, 478, 486, 502, 541, 562, 577, 586, 613
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 12 2025

Keywords

Crossrefs

Supersequence of A077065 and of A178490.

Programs

  • Magma
    [k: k in [1..400] | #PrimeDivisors(k*(k+1) div 2) eq 2];
    
  • Maple
    filter:= proc(n) local W1, n1, W2; uses numtheory;
         if n::odd then nops(factorset(n)) = 1 and nops(factorset((n+1)/2)) = 1
         else nops(factorset(n/2)) = 1 and nops(factorset(n+1)) = 1
         fi
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 12 2025
  • Mathematica
    Select[Range[600], PrimeNu[#*(#+1)/2] == 2 &] (* Amiram Eldar, Jan 12 2025 *)
  • PARI
    isok(k) = omega(k*(k+1)/2) == 2; \\ Michel Marcus, Jan 14 2025
Showing 1-4 of 4 results.