cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A233203 a(n) = floor(n^n / 2^n).

Original entry on oeis.org

1, 0, 1, 3, 16, 97, 729, 6433, 65536, 756680, 9765625, 139312339, 2176782336, 36972058910, 678223072849, 13363461010158, 281474976710656, 6311342330065435, 150094635296999121, 3773536025353076151, 100000000000000000000, 2785962590401641140642, 81402749386839761113321
Offset: 0

Views

Author

Alex Ratushnyak, Dec 05 2013

Keywords

Examples

			a(5) = floor(5^5 / 2^5) = floor(3125 / 32) = 97.
		

Crossrefs

Cf. A000079, A000312, A178537 (n^n mod 2^n for odd n), A206344.
Bisection gives: A062206 (even part).

Programs

Formula

a(n) = floor((n/2)^n).

A178966 Primes of the form (2n-1)^(2n-1) mod 2^(2n-1).

Original entry on oeis.org

3, 68491, 1472837, 20933977, 115763405909, 860612330076805920786264707, 295312333859267885313149356219, 3030645565448009172324576658633624992466799, 1438089684181622246462815859549895702132195129054882453928357949021844283495791173
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 01 2011

Keywords

Comments

Primes for n's: 2, 10, 11, 13, 19, 46, 50, 72, 139, 162, 344, 739, 1757, 3439, (10000)..., .

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{a = PowerMod[2 n - 1, 2 n - 1, 2^(2 n - 1)]}, If[ PrimeQ@ a, a, 0]]; k = 1; lst = {}; While[k < 100, a = f@ k; If[a != 0, AppendTo[lst, a]]; k++]; lst
    pfQ[n_]:=Module[{c=2n-1},PowerMod[c,c,2^c]]; Select[Table[pfQ[n],{n,200}],PrimeQ] (* Harvey P. Dale, Aug 31 2017 *)

A179003 Numbers k such that 2^(2*k-1) mod (2*k+1) is prime.

Original entry on oeis.org

1, 2, 4, 6, 7, 10, 16, 18, 19, 25, 28, 30, 31, 34, 36, 37, 38, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 78, 79, 87, 88, 91, 96, 97, 100, 106, 107, 109, 112, 115, 118, 124, 126, 133, 138, 145, 147, 148, 151, 154, 156, 157, 160, 163, 169, 180
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 03 2011

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[n_] := PrimeQ@ PowerMod[2, 2 n - 1, 2 n + 1]; Select[ Range@ 180, fQ]

A172997 Numbers n such that for p=prime(n), (2p-1)^(2p-1) mod 2^(2p-1) is prime.

Original entry on oeis.org

1, 5, 6, 8, 34, 131
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 01 2011

Keywords

Examples

			5 is in the sequence, since prime(5)=11 and (2*11-1)^(2*11-1) mod 2^(2*11-1) = 21^21 mod 2^21 = 1472837 is prime.
		

Crossrefs

A179002 Primes p such that 2^(2p-1) mod (2p+1) is prime.

Original entry on oeis.org

2, 7, 19, 31, 37, 43, 61, 67, 79, 97, 107, 109, 151, 157, 163, 199, 223, 241, 257, 269, 271, 307, 337, 349, 379, 409, 421, 433, 439, 523, 557, 577, 601, 613, 619, 631, 673, 691, 739, 757, 787, 811, 823, 853, 863, 877, 883, 919, 967, 991, 1009, 1051, 1061, 1063, 1117, 1153, 1181, 1213
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 03 2011

Keywords

Crossrefs

Programs

  • Mathematica
     fQ[n_] := PrimeQ@ PowerMod[2, 2n - 1, 2n + 1]; Select[ Prime@ Range@ 200, fQ]

Formula

A178970(a(n)=A000040(i))=A000040(k).

A233398 n^n mod 3^n.

Original entry on oeis.org

0, 1, 4, 0, 13, 209, 0, 1231, 739, 0, 51850, 129587, 0, 657067, 868120, 0, 8400886, 91426058, 0, 859535812, 1483912651, 0, 30374372956, 68688648677, 0, 422259655777, 2129293909882, 0, 11623487749588, 44275834126985, 0, 329933248712302, 971441847750184, 0, 927342285792613
Offset: 0

Views

Author

Alex Ratushnyak, Dec 08 2013

Keywords

Comments

Conjecture: a(x) equals zero for every x that's a multiple of 3. - Harvey P. Dale, Jan 10 2025

Crossrefs

Programs

  • Mathematica
    Table[PowerMod[n,n,3^n],{n,0,40}] (* Harvey P. Dale, Jan 10 2025 *)
  • Python
    for n in range(55): print(f"{n**n % 3**n}, ")
Showing 1-6 of 6 results.