A178590 a(2n) = 3*a(n), a(2n+1) = a(n) + a(n+1).
1, 3, 4, 9, 7, 12, 13, 27, 16, 21, 19, 36, 25, 39, 40, 81, 43, 48, 37, 63, 40, 57, 55, 108, 61, 75, 64, 117, 79, 120, 121, 243, 124, 129, 91, 144, 85, 111, 100, 189, 103, 120, 97, 171, 112, 165, 163, 324, 169, 183, 136, 225, 139, 192, 181, 351, 196, 237, 199, 360, 241
Offset: 1
Examples
In groups of 2^n terms (n=0,1,2,...): 1; 3, 4; 9, 7, 12, 13; 27, 16, 21, 19, 36, 25, 39, 40; ... a(6) = 12 = 3*a(3) = 3*4 a(7) = 13 = a(3) + a(4) = 4 + 9
Links
- Antti Karttunen, Table of n, a(n) for n = 1..8191
Programs
-
Mathematica
a[0] = a[1] = 1; a[n_] := a[n] = If[ OddQ@n, a[(n - 1)/2] + a[(n + 1)/2], 3*a[n/2]]; Array[a, 61] (* Robert G. Wilson v, Jun 11 2010 *)
Formula
a(2n) = 3*a(n), a(2n+1) = a(n) + a(n+1).
G.f.: x * Product_{k>=0} (1 + 3*x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Jul 07 2019
Extensions
a(19) onwards from Robert G. Wilson v, Jun 11 2010
Comments